Development of Anaerobic High-Rate Reactors, Focusing on Sludge Bed Technology
详细信息    查看全文
  • 关键词:Anaerobic biotechnology ; Flocculent sludge ; Granulation ; High ; rate reactor technology ; Industrial wastewater treatment ; Sludge bed reactors
  • 刊名:Advances in Biochemical Engineering/Biotechnology
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:156
  • 期:1
  • 页码:363-395
  • 参考文献:1.van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented techniques. Water Sci Technol 57(8):1137–1148CrossRef
    2.Lettinga, G (2014) My anaerobic sustainability story. LeAF, Wageningen, 200 pp. http://​www.​leaf-wageningen.​nl/​en/​leaf.​htm
    3.Ersahin ME, Ozgun H, Dereli RK, Ozturk I (2011) Anaerobic treatment of industrial effluents: an overview of applications. In: Einschlag FSG (ed) Waste water-treatment and reutilization. InTech, India, pp 415–456
    4.McCarty PL (2001) The development of anaerobic treatment and its future. Water Sci Technol 44(8):149–156
    5.Imhoff K (1916) Separate sludge digestion improves Imhoff tank operation by keeping sewage fresh. Eng Record 74:101–102
    6.Buswell AM (1957) Fundamentals of anaerobic treatment of organic wastes. Sewage Ind Waste 29:717–721
    7.Buswell AM, Boruff CS, Wiesman CK (1932) Anaerobic stabilization of milk waste. Ind Eng Chem 24:1423–1425CrossRef
    8.Buswell AM, Sollo FW (1948) The mechanism of the methane fermentation. J Am Chem Soc 70:1778CrossRef
    9.Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York
    10.van Lier JB, Mahmoud N, Zeeman G (2008) Anaerobic biological wastewater treatment. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjamovic D (eds) Biological wastewater treatment: principles, modeling and design. IWA, London
    11.Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734CrossRef
    12.Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sustain Energy Rev 4:135–156CrossRef
    13.Dereli RK, Ersahin ME, Ozgun H, Ozturk I, Jeison D, van der Zee F, van Lier JB (2012) Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresour Technol 122:160–170CrossRef
    14.Ozgun H, Gimenez JB, Ersahin ME, Tao Y, Spanjers H, van Lier JB (2015) Impact of membrane addition for effluent extraction on the performance and sludge characteristics of upflow anaerobic sludge blanket reactors treating municipal wastewater. J Membr Sci 479:95–104CrossRef
    15.Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104CrossRef
    16.Schroepfer GJ, Fullen WJ, Johnson AS, Ziemke NR, Anderson JJ (1955) The anaerobic contact process as applied to packinghouse wastes. Sewage Ind Waste 27(4):460–486
    17.Young JC (1991) Factors affecting the design and performance of upflow anaerobic filters. Water Sci Technol 24(8):133–155
    18.Young JC, McCarty PL (1969) The anaerobic filter for waste treatment. J Water Pollut Control Fed 41:160–173
    19.Young JC, Yang BS (1989) Design considerations for full-scale anaerobic filters. J Water Pollut Control Fed 61(9):1576–1587
    20.Seyfried CF (1988) Reprints verfahrenstechnik abwasserreiningung, GVC-Diskussionstagung. October 17–19, Baden-Baden, Germany
    21.Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38(6):1376–1389CrossRef
    22.Sung S, Dague RR (1995) Laboratory studies on the anaerobic sequencing batch reactor. Water Environ Res 67(3):294–301CrossRef
    23.Wirtz RA, Dague RR (1995) Enhancement of granulation and start-up in the anaerobic sequencing batch reactor. Water Environ Res 68(5):883–892CrossRef
    24.Lettinga G, van der Sar J, van der Ben J (1976) Anaerobe zuivering van het afvalwater van de bietsuikerindustrie (2). H2O 9:38–43
    25.Lettinga G, van Velsen L, de Zeeuw W, Hobma SW (1979) The application of anaerobic digestion to industrial pollution traetment. In: 1st International symposium on anaerobic digestion, Cardiff, 17–21 September 1979
    26.Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) (1987) GASMAT: international workshop on granular anaerobic sludge, microbiology and technology, Lunteren, PUDOC, Wageningen, 25–27 October 1987
    27.Abbasi T, Abbasi SA (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energy Rev 16(3):1696–1708CrossRef
    28.De Zeeuw WJ (1982) Korrelslibbvorming Bij De Anaerobe Zuivering Van Destruktieafvalwater. Intern rapport, Vakgroep Waterzuivering, Landbouwhogeschool Wageningen
    29.De Zeeuw WJ (1987) Granular sludge in UASB-reactors. Granular anaerobic sludge, microbiology and technology workshop, Lunteren, 25–27 October 1987
    30.Dolfing J (1987) Microbiological aspects of granular methanogenic sludge, Ph.D. thesis. Agricultural University, Wageningen
    31.Fang HHP, Chui HK, Li YY (1994) Microbial structure and activity of UASB granules treating different wastewaters. Water Sci Technol 30(12):87–96
    32.Habeeb SA, Aziz Bin Abdul Latiff AB, Bin Daud Z, Bin Ahmad Z (2011) A review on granules initiation and development inside UASB reactor and the main factors affecting granules formation process. IJEE 2(2):311–320
    33.Hulshoff Pol LW, Lettinga G (1986) Advanced reactor design, operation and economy. Water Sci Technol 18(12):99–108
    34.Hulshoff Pol LW, Heijnekamp K, Lettinga G (1987) The selection pressure as driving force behind the granulation of anaerobic sludge. Granular anaerobic sludge; microbiology and technology workshop, Lunteren, 25–27 October 1987
    35.Liu Y, Xu HL, Yang SF, Tay JH (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:661–673CrossRef
    36.Song M, Shin SG, Hwang S (2010) Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresour Technol 10(Suppl 1):S23–S28CrossRef
    37.Subramanyam R (2013) Physicochemical and morphological characteristics of granular sludge in upflow anaerobic sludge blanket reactors. Environ Eng Sci 30(5):201–212CrossRef
    38.van Lier JB, Boersma F, Debets MMWH, Lettinga G (1994) High rate thermophilic wastewater treatment in compartmentalized upflow reactors. Water Sci Technol 30(12):251–261
    39.Wiegant WM, de Man AWA (1986) Granulation of biomass in thermophilic anaerobic sludge blanket reactors treating acidified wastewaters. Biotechnol Bioeng 28:718–727CrossRef
    40.Wu WM, Hickey RF, Zeikus JG (1991) Characterisation of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol 57:3438–3449
    41.Calderon K, Gonzales-Martinez A, Gomez-Silvan C, Osorio F, Rodelas B, Gonzales-Lopez J (2013) Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent advances and future prospects. Int J Mol Sci 14(9):18572–18598CrossRef
    42.Ismail SB, Gonzalez P, Jeison D, van Lier JB (2008) Effects of high salinity wastewater on methanogenic sludge bed systems. Water Sci Technol 58(10):1963–1970CrossRef
    43.Batstone DJ, Keller J, Blackall LL (2004) The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Res 38:1390–1404CrossRef
    44.MacLeod FA, Guiot SR, Costerton JW (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56(6):1598–1607
    45.Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Evol Microbiol 40:79–82
    46.Baloch MI, Akunna JC, Kierans M, Collier PJ (2008) Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy. Bioresour Technol 99:922–929CrossRef
    47.Guiot SR, Pauss A, Costerton JW (1992) A structured model of the anaerobic granule consortium. Water Sci Technol 25(7):1–10
    48.Grotenhuis JTC, Smit M, Plugge CM, Xu Y, Van Lammeren AAM, Stams AJM, Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57:1942–1949
    49.McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219(2):297–304CrossRef
    50.Grotenhuis JTC, Stams AJM, Zehnder AJB (1992) Hydrophobicity and electrophoretic mobility of anaerobic isolates from methanogenic granular sludge. Appl Environ Microbiol 58:1054–1056
    51.Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic granules. Appl Environ Microbiol 65(3):1280–1288
    52.Satoh H, Miura Y, Tsushima I, Okabe S (2007) Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microbiol 73(22):7300–7307CrossRef
    53.van Loosdrecht MCM, de Kreuk MK, Heijnen JJ (2002) Aerobic granular sludge formation. In: van Lier JB, Lexmond M, de Vos H (eds) Proceedings of “Granulation and Auto-immobilisation Processes in Wastewater Treatment”, farewell seminar Hulshoff Pol, Wageningen, 28 June 2002
    54.Hulshoff Pol LW, de Zeeuw WJ, Velzeboer CTM, Lettinga G (1983) Granulation in UASB-reactors. Water Sci Technol 15(8/9):291–304
    55.Vanderhaegen B, Ysebaert E, Favere K, Van Wambeke M, Peeters T, Panic V, Vandenlangenbergh V, Verstraete W (1992) Acidogenesis in relation to in-reactor granule yield. Water Sci Technol 25:75–81
    56.Lim SJ, Kim TH (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 60:189–202CrossRef
    57.Nnaji CC (2013) A review of the upflow anaerobic sludge blanket reactor. Desalination Water Treat 52:4122–4143CrossRef
    58.Habets LHA, Knelissen JH (1985) Application of the UASB reactor for anaerobic treatment of paper and board mill effluent. Water Sci Technol 17(1):61–75
    59.Rajagopal R, Saady NMC, Torrijos M, Thanikal JV, Hung YT (2013) Sustainable agro-food industrial wastewater treatment using high rate anaerobic process. Water 5:292–311CrossRef
    60.Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae, Nashville
    61.Alphenaar PA (1994) Anaerobic granular sludge: characterization and factors affecting its functioning. Ph.D. thesis, G. Lettinga (promotor), Department of Environmental Technology, Agricultural University, Wageningen
    62.Banu JR, Kaliappan S, Yeom IT (2007) Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int J Environ Sci Technol 4(3):363–370CrossRef
    63.Monroy O, Fama G, Meraz M, Montoya L, Macarie H (2000) Anaerobic digestion for wastewater treatment in Mexico: state of the technology. Water Res 34(6):1803–1816CrossRef
    64.Guiot SR, van den Berg L (1984) Performance and biomass retention of an upflow anaerobic reactor combining a sludge blanket and a filter. Biotechnol Lett 6(3):161–164CrossRef
    65.Guiot SR, Van den Berg L (1985) Performance of an upflow anaerobic reactor combining a sludge blanket and a filter treating sugar waste. Biotechnol Bioeng 27:800–806CrossRef
    66.Kennedy KJ, Guiot SR (1986) Anaerobic upflow bed-filter-development and application. Water Sci Technol 18(12):71–86
    67.Strydom JP, Britz TJ, Mostert JF (1997) Two-phase anaerobic digestion of three different dairy effluents using a hybrid bioreactor. Water SA 23(2):151–156
    68.Buyukkamaci N, Filibeli A (2002) Concentrated wastewater treatment studies using an anaerobic hybrid reactor. Process Biochem 38:771–775CrossRef
    69.Ramakrishnan A, Gupta SK (2008) Effect of COD/NO3-N ratio on the performance of a hybrid UASB reactor treating phenolic wastewater. Desalination 232:128–138CrossRef
    70.Kleerebezem R, Hulshoff Pol LW, Lettinga G (1999) The role of benzoate in anaerobic degradation in terephthalate. Appl Environ Microbiol 65(3):1161–1167
    71.Kleerebezem R, Hulshoff Pol LW, Lettinga G (1999) Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65(3):1152–1160
    72.Macarie H (1999) Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters. Water Sci Technol 42(5-6):201–214
    73.Kleerebezem R, Macarie H (2003) Treating industrial wastewater: anaerobic digestion comes at age. Chem Eng 56–64
    74.Heijnen SJ, Mulder A, Weltevrede R, Hols PH, van Leeuwen HLJM (1990) Large-scale anaerobic/aerobic treatment of complex industrial wastewater using immobilized biomass in fluidized bed and air-lift suspension reactors. Chem Eng Technol 13(1):202–208CrossRef
    75.Li A, Sutton PM (1981) Dorr Oliver Anitron system, Fluidized Bed technology for methane production from dairy wastes. Whey Products Institute Annual Meeting. Chicago, USA
    76.Moletta R, Escoffier Y, Frédéric Ehlinger F, Coudert JP, Leyris JP (1994) On-line automatic control system for monitoring an anaerobic fluidized-bed reactor: response to organic overload. Water Sci Technol 30(12):11–20
    77.Ehlinger F (1994) Anaerobic biological fluidized beds: operating experiences in France. In: 7th International symposium on anaerobic digestion, Cape Town, 23–27 January 1994
    78.Holst TC, Truc A, Pujol R (1997) Anaerobic fluidised beds: ten years of industrial experience. Water Sci Technol 36(6–7):415–422
    79.Zoutberg GR, Frankin R (1996) Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor; the biobed® EGSB reactor. Water Sci Technol 34(5-6):375–381CrossRef
    80.Zoutberg GR, De Been P (1997) The Biobed® EGSB (Expanded Granular Sludge Bed) system covers shortcomings of the Upflow Anaerobic Sludge Blanket reactor in the chemical industry. Water Sci Technol 35(10):183–188CrossRef
    81.Frijters CTMJ, Vos RH, Scheffer G, Mulder R (2006) Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res 40(6):1249–1257CrossRef
    82.Rebac S, van Lier JB, Lens P, van Cappellen J, Vermeulen M, Stams AJM, Swinkels KTM, Lettinga G (1998) Psychrophilic (6–15°C) high rate anaerobic treatment of malting wastewater in a two-module expanded granular sludge bed system. Biotechnol Prog 14:856–864CrossRef
    83.Vellinga SHJ, Hack PJFM, van der Vlugt AJ (1986) New type “high rate” anaerobic reactor; first experience on semi-technical scale with a revolutionary and high loaded anaerobic system. Anaerobic treatment: a grown-up technology, aquatech water treatment conference, Amsterdam, 15–19 September 1986
    84.Habets LHA, Engelaar AJHH, Groeneveld N (1997) Anaerobic treatment of inuline effluent in an internal circulation reactor. Water Sci Technol 35(10):189–197CrossRef
    85.Pereboom JHF, Vereijken TLFM (1994) Methanogenic granule development in full scale internal circulation reactors. Water Sci Technol 30(8):9–21
    86.van Lier JB, van der Zee F, Tan FP, Rebac S, Kleerebezem R (2001) Advances in high-rate anaerobic treatment: staging of reactor systems. Water Sci Technol 44(8):15–25
    87.Lettinga G, Hulshoff Pol LW (1991) UASB process design for various types of wastewater. Water Sci Technol 24(8):87–107
    88.Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35(7):1723–1729CrossRef
    89.Fukuzaki S, Nishio N, Nagai S (1995) High rate performance and characterization of granular methanogenic sludges in upflow anaerobic sludge blanket reactors fed with various defined substrates. J Ferment Bioeng 79(4):354–359CrossRef
    90.Puñal A, Brauchi S, Reyes JG, Chamy R (2003) Dynamics of extracellular polymeric substances in UASB and EGSB reactors treating medium and low concentrated wastewaters. Water Sci Technol 48(6):41–49
    91.Bachmann A, Beard VL, McCarty PL (1985) Performance-characteristics of the anaerobic baffled reactor. Water Res 19:99–106CrossRef
    92.Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33:1559–1578CrossRef
    93.Zhu G, Zou R, Jha AK, Huang X, Liu L, Liu C (2015) Recent developments and future perspectives of anaerobic baffled bioreactor for wastewater treatment and energy recovery. Crit Rev Environ Sci Technol 45(12):1243–1276CrossRef
    94.Guiot SR, Safi B, Frignon JC, Mercier P, Mullignan C, Tremblay R (1995) Performances of a full-scale novel multiplate anaerobic reactor treating cheese whey effluent. Biotechnol Bioeng 45:398–405CrossRef
    95.Tagawa T, Takahashi H, Sekiguchi Y, Ohashi A, Harada H (2002) Pilot-plant study on anaerobic treatment of a lipid- and protein-rich food industrial wastewater by a thermophilic multi-staged UASB reactor. Water Sci Technol 45(10):225–230
    96.Hwu CS, Molenaar G, Garthoff J, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: impact of reactor hydrodynamics. Biotechnol Lett 19:447–451CrossRef
    97.Hwu CS, van Beek B, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: effect of washed out biomass recirculation. Biotechnol Lett 19:453–456CrossRef
    98.Frijters CTMJ, Jorna T, Hesselink G, Kruit J, van Schaick D, van der Arend R (2014) Experiences with anaerobic treatment of fat-containing food waste liquids: two full scale studies with a novel anaerobic flotation reactor. Water Sci Technol 69(7):1386–1394CrossRef
    99.Jeison D, van Lier JB (2007) Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: factors affecting long-term operational flux. Water Res 41:3868–3879CrossRef
    100.Ersahin ME, Ozgun H, Tao Y, van Lier JB (2014) Applicability of dynamic membrane technology in anaerobic membrane bioreactors. Water Res 48:420–429CrossRef
    101.Yang J, Spanjers H, Jeison D, van Lier JB (2013) Impact of Na+ on biological wastewater treatment and the potential of anaerobic membrane bioreactors: a review. Crit Rev Environ Sci Technol 43(24):2722–2746CrossRef
    102.Jeison D, Telkamp P, van Lier JB (2009) Thermophilic sidestream anaerobic membrane bioreactors: the shear rate dilemma. Water Environ Res 81(11):2372–2380CrossRef
    103.Jeison D, van Betuw W, van Lier JB (2008) Feasibility of anaerobic membrane bioreactors for the treatment of wastewaters with particulate organic matter. Sep Sci Technol 43:3417–3431CrossRef
    104.Muñoz Sierra JD, Spanjers H, van Lier JB (2014) Biomass acclimatisation during start-up of AnMBR reactors treating saline phenolic wastewater. In: Proceedings of the 11th Latin American workshop and symposium on anaerobic digestion, IWA conference, La Habana, 25–28 November 2014
    105.Kang IJ, Yoon SH, Lee CH (2002) Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Res 36:1803–1813CrossRef
    106.Futselaar H, Rosink R, Smith G, Koens L (2013) The anaerobic MBR for sustainable industrial wastewater management. Desalination Water Treat 51:4–6
    107.Christian S, Grant S, McCarty P, Wilson D, Mills D (2011) The first two years of full-scale anaerobic membrane bioreactor (AnMBR) operation treating high-strength industrial wastewater. Water Practice Technol 6(2). doi:10.​2166/​wpt.​2011.​032
    108.Allison M, Grant S, Christian S, Wilson D (2013) Full-scale operating experience with USA-based ADI-AnMBR systems for food wastes. Proc Water Environ Fed 2013(10):5255–5270CrossRef
    109.van Lier JB, Vashi A, van der Lubbe J, Heffernan B (2010) Anaerobic sewage treatment using UASB reactors: engineering and operational aspects, Chapter 4. In: Fang HHP (ed) Environmental anaerobic technology; applications and new developments. World Scientific, Imperial College Press, London, pp 59–89, ISBN 978-1-84816-542-7CrossRef
    110.Habets LHA, Knelissen HJ (1997) In line biological water regeneration in a zero discharge recycle paper mill. Water Sci Technol 35(2–3):41–48CrossRef
    111.Van Lier JB, Boncz MA (2002) Controlling calcium precipitation in an integrated anaerobic aerobic treatment system of a ‘zero-discharge’ paper mill. Water Sci Technol 45(10):341–348
    112.Razo-Flores E, Macarie H, Morier F (2006) Application of biological treatment systems for chemical and petrochemical wastewaters. In: Cervantes FJ, Pavlostathis SP, van Haandel AC (eds) Advanced biological treatment processes for industrial wastewaters. IWA, London
    113.Zaher U, Moussa MS, Widyatmika IN, van Der Steen P, Gijzen HJ, Vanrolleghem PA (2006) Modelling anaerobic digestion acclimatisation to a biodegradable toxicant: application to cyanide. Water Sci Technol 54(4):129–137CrossRef
    114.Aydin AF, Ersahin ME, Dereli RK, Sarikaya HZ, Ozturk I (2010) Long-term anaerobic treatability studies on opium alkaloids industry effluents. J Environ Sci Health A Tox Hazard Subst Environ Eng 45(2):192–200CrossRef
    115.Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98(12):2369–2385CrossRef
    116.Rebac S, van Lier JB, Lens PNL, Stams AJM, Dekkers F, Swinkels KTM, Lettinga G (1999) Psychrophilic anaerobic treatment of low strength wastewaters. Water Sci Technol 39(5):203–210CrossRef
    117.Esparza Soto M, Solis Morelos C, Herna JJ (2011) Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: a pilot-scale experience. Water Sci Technol 64(8):1629–1635CrossRef
    118.Ersahin ME, Dereli RK, Insel G, Ozturk İ, Kinaci C (2007) Model based evaluation for the anaerobic treatment of corn processing wastewaters. Clean (Weinh) 35(6):576–581
    119.Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic Digestion Model No. 1. Scientific and Technical Report No. 13, IWA, London
    120.Dereli RK, Ersahin ME, Ozgun H, Ozturk I, Aydin AF (2010) Applicability of anaerobic digestion model no.1 (ADM1) for a specific industrial wastewater: opium alkaloid effluents. Chem Eng J 165(1):89–94CrossRef
    121.Barrera EL, Spanjers H, Solon K, Amerlinck Y, Nopens I, Dewulf J (2015) Modeling the anaerobic digestion of cane-molasses vinasse: extension of the anaerobic digestion model no. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Res 71:42–54CrossRef
    122.Batstone DJ, Keller J (2003) Industrial application of the IWA anaerobic digestion model no.1 (ADM1). Water Sci Technol 47(12):199–206
    123.Chen Z, Hu D, Zhang Z, Ren N, Zhu H (2009) Modeling of two-phase anaerobic process treating traditional Chinese medicine wastewater with the IWA anaerobic digestion model no. 1. Bioresour Technol 100:4623–4631CrossRef
    124.Hinken L, Huber M, Weichgrebe D, Rosenwinkel KH (2014) Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests. Water Res 64:82–93CrossRef
  • 作者单位:J. B. van Lier (18) (19)
    F. P. van der Zee (20)
    C. T. M. J. Frijters (21)
    M. E. Ersahin (18) (22)

    18. Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Stevinweg 1, 2628 CN, Delft, The Netherlands
    19. Unesco – IHE, 3015, 2601 DA, Delft, The Netherlands
    20. Biothane Systems International, Tanthofdreef 21, 2600 GB, Delft, The Netherlands
    21. Paques BV, T. de Boerstraat 24, 8561 EL, Balk, The Netherlands
    22. Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
  • 丛书名:Anaerobes in Biotechnology
  • ISBN:978-3-319-45651-5
  • 卷排序:156
文摘
In the last 40 years, anaerobic sludge bed reactor technology has evolved from localized laboratory-scale trials to worldwide successful implementations in a variety of industries. High-rate sludge bed reactors are characterized by a very small footprint and high applicable volumetric loading rates. Best performances are obtained when the sludge bed consists of highly active and well settleable granular sludge. Sludge granulation provides a rich microbial diversity, high biomass concentration, high solids retention time, good settling characteristics, reduction in both operation costs and reactor volume, and high tolerance to inhibitors and temperature changes. However, sludge granulation cannot be guaranteed on every type of industrial wastewater. Especially in the last two decades, various types of high-rate anaerobic reactor configurations have been developed that are less dependent on the presence of granular sludge, and many of them are currently successfully used for the treatment of various kinds of industrial wastewaters worldwide. This study discusses the evolution of anaerobic sludge bed technology for the treatment of industrial wastewaters in the last four decades, focusing on granular sludge bed systems.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.