Optimization-based model reference adaptive control for dynamic positioning of a fully actuated underwater vehicle
详细信息    查看全文
文摘
This paper presents a predictive optimization-based model reference adaptive control (MRAC) approach for dynamic positioning (DP) of a fully actuated underwater vehicle subject to dynamic uncertainties and actuator saturation. Compared with conventional linear reference model-based approaches, this proposed MRAC controller utilizes an optimized reference model composed of the closed-loop approximate vehicle model under a nonlinear model predictive controller, in which both the state and input constraints are considered. An adaptive dynamic inversion controller is designed to track the reference trajectory in the presence of dynamic uncertainties, and a single hidden layer neural network is incorporated to compensate for the mismatch of the actual and approximate models and ensure the convergence of tracking errors. The effectiveness of the proposed DP approach is validated by comparative simulations performed with a remotely operated vehicle.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.