CyberKnife multisession stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for perioptic meningiomas: intermediate-term results and radiobiological considerations
详细信息    查看全文
  • 作者:Alfredo Conti ; Antonio Pontoriero ; Federica Midili ; Giuseppe Iat矛…
  • 关键词:Meningioma ; CyberKnife ; Radiation induced optic neuropathy ; Hypofractionated stereotactic radiotherapy ; Radiobiology
  • 刊名:SpringerPlus
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:4
  • 期:1
  • 全文大小:1648KB
  • 参考文献:Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD (2006) Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 59(2):244鈥?54, discussion 244鈥?54. doi:10.1227/01.NEU.0000223512.09115.3ECrossRef
    Alafaci C, Grasso G, Conti A, Caffo M, Salpietro FM, Tomasello F (2014) Cyberknife radiosurgery for cranial plasma cell tumor. Turk Neurosurg 24(2):272鈥?75, doi:10.5137/1019-5149.JTN. 7049-12.0
    Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123鈥?35CrossRef
    Colombo F, Casentini L, Cavedon C, Scalchi P, Cora S, Francescon P (2009) Cyberknife radiosurgery for benign meningiomas: short-term results in 199 patients. Neurosurgery 64(2 Suppl):A7鈥揂13, doi:10.1227/01.NEU.0000338947.84636.A6CrossRef
    Conti A, Pontoriero A, Salamone I, Siragusa C, Midili F, La Torre D, Calisto A, Granata F, Romanelli P, De Renzis C, Tomasello F (2009) Protecting venous structures during radiosurgery for parasagittal meningiomas. Neurosurg Focus 27(5):E11, doi:10.3171/2009.8.FOCUS09-157CrossRef
    Conti A, Pontoriero A, Arpa D, Siragusa C, Tomasello C, Romanelli P, Cardali S, Granata F, De Renzis C, Tomasello F (2012) Efficacy and toxicity of CyberKnife re-irradiation and 鈥渄ose dense鈥?temozolomide for recurrent gliomas. Acta Neurochir (Wien) 154(2):203鈥?09, doi:10.1007/s00701-011-1184-1CrossRef
    Conti A, Pontoriero A, Ricciardi GK, Granata F, Vinci S, Angileri FF, Pergolizzi S, Alafaci C, Rizzo V, Quartarone A, Germano A, Foroni RI, De Renzis C, Tomasello F (2013) Integration of functional neuroimaging in CyberKnife radiosurgery: feasibility and dosimetric results. Neurosurg Focus 34(4):E5, doi:10.3171/2013.2.FOCUS12414CrossRef
    Crossen J, Garwood D, Glatstein E, Neuwelt E (1994) Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 12:627鈥?42
    Dufour H, Muracciole X, Metellus P, Regis J, Chinot O, Grisoli F (2001) Long-term tumor control and functional outcome in patients with cavernous sinus meningiomas treated by radiotherapy with or without previous surgery: is there an alternative to aggressive tumor removal? Neurosurgery 48:285鈥?94
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109鈥?22CrossRef
    Goldsmith BJ, Rosenthal SA, Wara WM, Larson DA (1992) Optic neuropathy after irradiation of meningioma. Radiology 185(1):71鈥?6, doi:10.1148/radiology.185.1.1523337CrossRef
    Goldsmith B, Wara W, Wilson C, Larson D (1994) Postoperative irradiation for subtotally resected meningiomas. J Neurosurg 80:195鈥?01CrossRef
    Killory BD, Kresl JJ, Wait SD, Ponce FA, Porter R, White WL (2009) Hypofractionated CyberKnife radiosurgery for perichiasmatic pituitary adenomas: early results. Neurosurgery 64(2 Suppl):A19鈥揂25, doi:10.1227/01.NEU.0000341630.42160.18CrossRef
    Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 16(6):1623鈥?630CrossRef
    Leber KA, Bergloff J, Langmann G, Mokry M, Schrottner O, Pendl G (1995) Radiation sensitivity of visual and oculomotor pathways. Stereotact Funct Neurosurg 64(Suppl 1):233鈥?38
    Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8:S13鈥揝19CrossRef
    Maguire P, Clough R, Friedman A, Halperin E (1999) Fractionated external-beam radiation therapy for meningiomas of the cavernous sinus. Int J Radiat Oncol Biol Phys 44:75鈥?9CrossRef
    Maire J, Caudry M, Guerin J, Celerier D, San Galli F, Causse N, Trouette R, Dautheribes M (1995) Fractionated radiation therapy in the treatment of intracranial meningiomas: local control, functional efficacy, and tolerance in 91 patients. Int J Radiat Oncol Biol Phys 33:315鈥?21CrossRef
    Marchetti M, Bianchi S, Milanesi I, Bergantin A, Bianchimd L, Broggi G, Fariselli L (2011) Multisession Radiosurgery for Optic Nerve Sheath Meningiomas: An Effective Option. Preliminary Results from a Monoinstitutional Experience. Neurosurgery. doi:10.1227/NEU.0b013e31822932fe
    Minniti G, Traish D, Ashley S, Gonsalves A, Brada M (2005) Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10聽years. J Clin Endocrinol Metab 90:800鈥?04CrossRef
    Minniti G, Amichetti M, Enrici R (2009) Radiotherapy and radiosurgery for benign skull base meningiomas. Radiat Oncol 4(1):42CrossRef
    Minniti G, Clarke E, Cavallo L, Osti M, Esposito V, Cantore G (2011) Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas. Radiat Oncol 6:36CrossRef
    Pollock BE, Cochran J, Natt N, Brown PD, Erickson D, Link MJ, Garces YI, Foote RL, Stafford SL, Schomberg PJ (2008) Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys 70(5):1325鈥?329CrossRef
    Romanelli P, Wowra B, Muacevic A (2007) Multisession CyberKnife radiosurgery for optic nerve sheath meningiomas. Neurosurg Focus 23(6):E11, doi:10.3171/FOC-07/12/E11CrossRef
    Shrieve DC, Hazard L, Boucher K, Jensen RL (2004) Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg 101(Suppl 3):390鈥?95, doi:10.3171/jns.2004.101.supplement 3.0390
    Stafford SL, Pollock BE, Leavitt JA, Foote RL, Brown PD, Link MJ, Gorman DA, Schomberg PJ (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55(5):1177鈥?181CrossRef
    Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander E 3rd, Kooy HM, Flickinger JC (1993) Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 27(2):215鈥?21CrossRef
  • 作者单位:Alfredo Conti (1)
    Antonio Pontoriero (2)
    Federica Midili (3)
    Giuseppe Iat矛 (2)
    Carmelo Siragusa (3)
    Chiara Tomasello (4)
    Domenico La Torre (1)
    Salvatore M Cardali (1)
    Stefano Pergolizzi (2)
    Costantino De Renzis (2)

    1. Department of Neurosurgery, University of Messina, AOU 鈥淧oliclinico G. Martino鈥? Via Consolare Valeria 1, 98125, Messina, Italy
    2. Department of Radiation Oncology, University of Messina, AOU 鈥淧oliclinico G. Martino鈥? Via Consolare Valeria 1, 98125, Messina, Italy
    3. Department of Medical Physics, University of Messina, AOU 鈥淧oliclinico G. Martino鈥? Via Consolare Valeria 1, 98125, Messina, Italy
    4. Department of Oncology, University of Messina, AOU 鈥淧oliclinico G. Martino鈥? Via Consolare Valeria 1, 98125, Messina, Italy
  • 刊物类别:Science, general;
  • 刊物主题:Science, general;
  • 出版者:Springer International Publishing
  • ISSN:2193-1801
文摘
Single fraction radiosurgery is conventionally precluded for lesions lying <2-3 mm of the anterior visual pathway because of the radiosensitivity of the optic nerve. We analyzed a series of 64 patients with 鈥減erioptic鈥?meningiomas treated by CyberKnife multisession radiosurgery and hypofractionated stereotactic radiotherapy (hSRT). Between July 2007-May 2010, patients were treated using conventional multisession Cyberknife schemes (2鈥? fractions) and results were retrospectively analyzed. A radiobiological model was then developed to estimate the best tumor control probability (TCP)/ normal tissue complication probability (NTCP) for these lesions. Resulting dose/fraction schemes were applied to patients treated between May 2010 and July 2014. Data were prospectively collected Twenty-five patients were included in the retrospective part of the study. Median tumor volume was 4.95 cc; median dose was 23.0 Gy and median number of fraction was 5 (range 2鈥?). No patient had visual deterioration at mean follow-up of 60鈥壜扁€?2 months. Tumor control was achieved in all cases. Thirty-nine patients were treated according the radiobiology model and results prospectively analyzed. Median tumor volume was 7.5 cc, median dose 25.0 Gy and mean number of fraction 5 (range 3鈥?5). No patient had visual deterioration or tumor progression at mean follow-up of 17鈥壜扁€?0 months. Conventional multisession CyberKnife treatments (2鈥? fractions) provided satisfactory results. Nonetheless, our estimation of TCP suggests the use of higher doses to grant long-term disease control. To achieve higher equivalent doses without significantly increasing the NTCP, we suggest the use of a greater number of fractions, moving to hSRT, in tumors in which the encasement of optic nerves is presumed. Keywords Meningioma CyberKnife Radiation induced optic neuropathy Hypofractionated stereotactic radiotherapy Radiobiology
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.