The Novel Tetramethylpyrazine Bis-nitrone (TN-2) Protects Against MPTP/MPP+-Induced Neurotoxicity via Inhibition of Mitochondrial-Dependent Apoptosis
详细信息    查看全文
  • 作者:Daping Xu (1)
    Hongwei Duan (2)
    Zaijun Zhang (1) (2) (3) (5)
    Wei Cui (3)
    Liang Wang (1) (2)
    Yewei Sun (2)
    Ming Lang (2)
    Pui Man Hoi (1)
    Yifan Han (3)
    Yuqiang Wang (2)
    Simon MingYuen Lee (1) (4)
  • 关键词:Parkinson’s disease ; MPTP ; Dopaminergic neuron ; Mitochondrial ; dependent apoptosis
  • 刊名:Journal of Neuroimmune Pharmacology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:9
  • 期:2
  • 页码:245-258
  • 全文大小:4,672 KB
  • 参考文献:1. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65(2):135-72 CrossRef
    2. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484-94 CrossRef
    3. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29(3-):323-33 CrossRef
    4. Chang Y, Hsiao G, Chen SH, Chen YC, Lin JH, Lin KH, Chou DS, Sheu JR (2007) Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacol Sin 28(3):327-33 CrossRef
    5. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525-35 CrossRef
    6. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52(2):381-89 CrossRef
    7. Durand G, Choteau F, Pucci B, Villamena FA (2008) Reactivity of superoxide radical anion and hydroperoxyl radical with alpha-phenyl-N-tert-butylnitrone (PBN) derivatives. J Phys Chem A 112(48):12498-2509 CrossRef
    8. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48(1):1-9 CrossRef
    9. Endoh H, Kato N, Fujii S, Suzuki Y, Sato S, Kayama T, Kotake Y, Yoshimura T (2001) Spin trapping agent, phenyl N-tert-butylnitrone, reduces nitric oxide production in the rat brain during experimental meningitis. Free Radic Res 35(5):583-91 CrossRef
    10. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70(1):268-75 CrossRef
    11. Floyd RA, Castro Faria Neto HC, Zimmerman GA, Hensley K, Towner RA (2013) Nitrone-based therapeutics for neurodegenerative diseases: their use alone or in combination with lanthionines. Free Radic Biol Med 62:145-56 CrossRef
    12. Gal S, Zheng H, Fridkin M, Youdim MB (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17(1):15-7 CrossRef
    13. Gao X, Zhao XL, Zhu YH, Li XM, Xu Q, Lin HD, Wang MW (2011) Tetramethylpyrazine protects palmitate-induced oxidative damage and mitochondrial dysfunction in C2C12 myotubes. Life Sci 88(17-8):803-09 CrossRef
    14. George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI (2009) Targeting the progression of Parkinson’s disease. Curr Neuropharmacol 7(1):9-6 CrossRef
    15. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281(9):5373-382 CrossRef
    16. Hayley S, Crocker SJ, Smith PD, Shree T, Jackson-Lewis V, Przedborski S, Mount M, Slack R, Anisman H, Park DS (2004) Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 24(8):2045-053 CrossRef
    17. He XJ, Yamauchi H, Uetsuka K, Nakayama H (2008) Neurotoxicity of MPTP to migrating neuroblasts: studies in acute and subacute mouse models of Parkinson’s disease. Neurotoxicology 29(3):413-20 CrossRef
    18. Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB (2013) Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 324(1-):94-9 CrossRef
    19. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141-51 CrossRef
    20. Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44(3 Suppl 1):S72–S84 CrossRef
    21. Kao TK, Chang CY, Ou YC, Chen WY, Kuan YH, Pan HC, Liao SL, Li GZ, Chen CJ (2013) Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Exp Neurol 247C:188-01 CrossRef
    22. Lang AE, Lozano AM (1998a) Parkinson’s disease. First of two parts. N Engl J Med 339(15):1044-053. doi:10.1056/NEJM199810083391506 CrossRef
    23. Lang AE, Lozano AM (1998b) Parkinson’s disease. Second of two parts. N Engl J Med 339(16):1130-143 CrossRef
    24. Lee DH, Kim CS, Lee YJ (2011) Astaxanthin protects against MPTP/MPP--induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49(1):271-80 CrossRef
    25. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78(5):1073-082 CrossRef
    26. Li W, Pi R, Chan HH, Fu H, Lee NT, Tsang HW, Pu Y, Chang DC, Li C, Luo J, Xiong K, Li Z, Xue H, Carlier PR, Pang Y, Tsim KW, Li M, Han Y (2005) Novel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors. J Biol Chem 280(18):18179-8188 CrossRef
    27. Liao SL, Kao TK, Chen WY, Lin YS, Chen SY, Raung SL, Wu CW, Lu HC, Chen CJ (2004) Tetramethylpyrazine reduces ischemic brain injury in rats. Neurosci Lett 372(1-):40-5 CrossRef
    28. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787-95 CrossRef
    29. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277(3):1645-648 CrossRef
    30. Liu LX, Chen WF, Xie JX, Wong MS (2008) Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 60(2):156-61 CrossRef
    31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-08 CrossRef
    32. O’Malley KL, Liu J, Lotharius J, Holtz W (2003) Targeted expression of BCL-2 attenuates MPP-?but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol Dis 14(1):43-1 CrossRef
    33. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829-39 CrossRef
    34. Ren Z, Ma J, Zhang P, Luo A, Zhang S, Kong L, Qian C (2012) The effect of ligustrazine on L-type calcium current, calcium transient and contractility in rabbit ventricular myocytes. J Ethnopharmacol 144(3):555-61 CrossRef
    35. Saito K, Kobayashi C, Ikeda M (2008) Effect of radical scavenger N-tert-butyl-alpha-phenylnitrone on stroke in a rat model using a telemetric system. J Pharm Pharm Sci 11(4):25-1
    36. Shih YH, Wu SL, Chiou WF, Ku HH, Ko TL, Fu YS (2002) Protective effects of tetramethylpyrazine on kainate-induced excitotoxicity in hippocampal culture. Neuroreport 13(4):515-19 CrossRef
    37. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689-02 CrossRef
    38. Song L, Song W, Schipper HM (2007) Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. J Neurosci Res 85(10):2186-195 CrossRef
    39. Soto-Otero R, Mendez-Alvarez E, Sanchez-Iglesias S, Zubkov FI, Voskressensky LG, Varlamov AV, de Candia M, Altomare C (2008) Inhibition of 6-hydroxydopamine-induced oxidative damage by 4,5-dihydro-3H-2-benzazepine N-oxides. Biochem Pharmacol 75(7):1526-537 CrossRef
    40. Soto-Otero R, Mendez-Alvarez E, Sanchez-Iglesias S, Labandeira-Garcia JL, Rodriguez-Pallares J, Zubkov FI, Zaytsev VP, Voskressensky LG, Varlamov AV, de Candia M, Fiorella F, Altomare C (2012) 2-Benzazepine nitrones protect dopaminergic neurons against 6-hydroxydopamine-induced oxidative toxicity. Arch Pharm (Weinheim) 345(8):598-09 CrossRef
    41. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397-08 CrossRef
    42. Sun Y, Jiang J, Zhang Z, Yu P, Wang L, Xu C, Liu W, Wang Y (2008) Antioxidative and thrombolytic TMP nitrone for treatment of ischemic stroke. Bioorg Med Chem 16(19):8868-874 CrossRef
    43. Sun Y, Yu P, Zhang G, Wang L, Zhong H, Zhai Z, Wang Y (2012a) Therapeutic effects of tetramethylpyrazine nitrone in rat ischemic stroke models. J Neurosci Res 90(8):1662-669 CrossRef
    44. Sun Y, Zhang G, Zhang Z, Yu P, Zhong H, Du J, Wang Y (2012b) Novel multi-functional nitrones for treatment of ischemic stroke. Bioorg Med Chem 20(12):3939-945 CrossRef
    45. Tan Z (2009) Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2(2):57-4 CrossRef
    46. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343-374. doi:10.1089/ars.2007.1957 CrossRef
    47. Wang P, Zweier JL (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 271(46):29223-9230 CrossRef
    48. Wang DQ, Wang W, Jing FC (2007) Effects of tetramethylpyrazine on brain oxidative damage induced by intracerebral perfusion of L-DOPA in rats with Parkinson’s disease. Zhongguo Zhong Xi Yi Jie He Za Zhi 27(7):629-32
    49. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284(32):21379-1385 CrossRef
    50. Yang L, Calingasan NY, Chen J, Ley JJ, Becker DA, Beal MF (2005) A novel azulenyl nitrone antioxidant protects against MPTP and 3-nitropropionic acid neurotoxicities. Exp Neurol 191(1):86-3 CrossRef
    51. Yang J, Ahn HN, Chang M, Narasimhan P, Chan PH, Song YS (2013) Complement component 3 inhibition by an antioxidant is neuroprotective after cerebral ischemia and reperfusion in mice. J Neurochem 124(4):523-35 CrossRef
    52. Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115(6):831-42 CrossRef
    53. Youdim MB, Geldenhuys WJ, Van der Schyf CJ (2007) Why should we use multifunctional neuroprotective and neurorestorative drugs for Parkinson’s disease? Parkinsonism Relat Disord 13(Suppl 3):S281–S291 CrossRef
    54. Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W (2003) Tetramethylpyrazine scavenges superoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci 72(22):2465-472 CrossRef
    55. Zhang C, Wang SZ, Zuo PP, Cui X, Cai J (2004) Protective effect of tetramethylpyrazine on learning and memory function in D-galactose-lesioned mice. Chin Med Sci J 19(3):180-84
    56. Zhang Z, Cui W, Li G, Yuan S, Xu D, Hoi MP, Lin Z, Dou J, Han Y, Lee SM (2012) Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCalpha and PI3K/AKT signaling pathways. J Agric Food Chem 60(33):8171-182 CrossRef
    57. Zhao Q, Gao J, Li W, Cai D (2010) Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson’s disease. Brain Res 1346:224-36 CrossRef
  • 作者单位:Daping Xu (1)
    Hongwei Duan (2)
    Zaijun Zhang (1) (2) (3) (5)
    Wei Cui (3)
    Liang Wang (1) (2)
    Yewei Sun (2)
    Ming Lang (2)
    Pui Man Hoi (1)
    Yifan Han (3)
    Yuqiang Wang (2)
    Simon MingYuen Lee (1) (4)

    1. State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenue Padre Tomás Pereira S.J., Macao, SAR, China
    2. Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
    3. Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, Hong Kong Polytechnic University, Hong Kong, China
    5. Institute of New Drug Research, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
    4. Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
  • ISSN:1557-1904
文摘
Mitochondrial-dependent apoptosis plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Methyl-4-phenyl-1,2,3,6-tetra- hydropyridine (MPTP), the most widely used neurotoxin to simulate PD, is converted to 1-methyl-4-phenylpyridinium (MPP+) in vivo. MPP+ induces excessive intracellular reactive oxygen species (ROS), leading to mitochondrial-dependent apoptosis via sequentially opening mitochondria permeability transition pore (mPTP) to release cytochrome c from mitochondria into cytoplasm and activate pro-apoptotic caspase proteins. We have previously synthesized 2,5-[[(1,1-dimethylethyl)oxidoimino]methyl]-3,6-trimethylpyrazine (TN-2), a novel derivative of the Chinese herb medicine tetramethylpyrazine (TMP). TN-2 is armed with two powerful free radical-scavenging nitrone moieties. TN-2 significantly reversed the loss of dopaminergic neurons in the substantia nigra and the decrease in dopamine level in the striatum induced by MPTP in mice. TN-2 ameliorated the MPTP-induced decrease of brain superoxide dismutase activity and glutathione concentration and increase of brain malondialdehyde. In addition, TN-2 inhibited MPP+-induced neuronal damage/apoptosis in primary cerebellum granular neurons (CGNs) and SH-SY5Y cells. TN-2 decreased excessive intracellular ROS, prevented the loss of mitochondrial membrane potential, blocked the release of mitochondrial cytochrome c and inhibited the activation of caspase-3 and caspase-9. Moreover, TN-2 treatment increased the mRNA expression of mitochondrial biogenesis factors peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC- 1α and β) and mitochondrial transcription factor A (Tfam) in SH-SY5Y cells and CGNs. These results suggest that TN-2 protects dopaminergic neurons against MPTP/MPP+-induced neurotoxicity via the inhibition of mitochondrial-dependent apoptosis and possibly via the activation of mitochondrial biogenesis, indicating that TN-2 is a potential new treatment for PD.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.