Electrospray ionization mass spectra of acyl carrier protein are insensitive to its solution phase conformation
详细信息    查看全文
  • 作者:Peter W. Murphy (1)
    Elden E. Rowland (1)
    David M. Byers (1)
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2007
  • 出版时间:August 2007
  • 年:2007
  • 卷:18
  • 期:8
  • 页码:1525-1532
  • 全文大小:894KB
  • 参考文献:1. Eyles, S. J.; Kaltashov, I. A. Methods to Study Protein Dynamics and Folding by Mass Spectrometry. / Methods 2004, / 34, 88-9. CrossRef
    2. Heck, A. J. R.; van den Heuvel, R. H. H. Investigation of Intact Protein Complexes by Mass Spectrometry. / Mass Spectrom. Rev. 2004, / 23, 368-89. CrossRef
    3. Konermann, L.; Simmons, D. A. Protein-Folding Kinetics and Mechanisms Studied by Pulse-Labeling and Mass Spectrometry. / Mass Spectrom. Rev. 2003, / 22, 1-6. CrossRef
    4. Maier, C. S.; Deinzer, M. L. Protein Conformations, Interactions, and H/D Exchange. / Methods Enzymol. 2005, / 402, 312-60. CrossRef
    5. Yan, X.; Watson, J.; Ho, P. S.; Deinzer, M. L. Mass Spectrometric Approaches Using Electrospray Ionization Charge States and Hydrogen-Deuterium Exchange for Determining Protein Structures and Their Conformational Changes. / Mol. Cell. Proteomics 2004, / 3, 10-3.
    6. Chowdhury, S. K.; Katta, V.; Chait, B. T. Probing Conformational Changes in Proteins by Mass Spectrometry. / J. Am. Chem. Soc. 1990, / 112, 9012-013. CrossRef
    7. Katta, V.; Chait, B. T. Conformational Changes in Proteins Probed by Hydrogen-Exchange Electrospray-Ionization Mass Spectrometry. / Rapid Commun. Mass Spectrom. 1991, / 5, 214-17. CrossRef
    8. Loo, J. A.; Edmonds, C. G.; Udseth, H. R.; Smith, R. D. Effect of Reducing Disulfide-Containing Proteins on Electrospray Ionization Mass Spectra. / Anal. Chem. 1990, / 62, 693-98. CrossRef
    9. Samalikova, M.; Grandori, R. Role of Opposite Charges in Protein Electrospray Ionization Mass Spectrometry. / J. Mass Spectrom. 2003, / 38, 941-47. CrossRef
    10. Kaltashov, I. A.; Mohimen, A. Estimates of Protein Surface Areas in Solution by Electrospray Ionization Mass Spectrometry. / Anal. Chem. 2005, / 77, 5370-379. CrossRef
    11. Samalikova, M.; Matecko, I.; Muller, N.; Grandori, R. Interpreting Conformational Effects in Protein Nano-ESI-MS Spectra. / Anal. Bioanal. Chem. 2004, / 378, 1112-123. CrossRef
    12. Vaidyanathan, S.; Kell, D. B.; Goodacre, R. Selective Detection of Proteins in Mixtures Using Electrospray Ionization Mass Spectrometry: Influence of Instrumental Settings and Implications for Proteomics. / Anal. Chem. 2004, / 76, 5024-032. CrossRef
    13. Grandori, R.; Matecko, I.; Muller, N. Uncoupled Analysis of Secondary and Tertiary Protein Structure by Circular Dichroism and Electrospray Ionization Mass Spectrometry. / J. Mass Spectrom. 2002, / 37, 191-96. CrossRef
    14. Konermann, L.; Douglas, D. J. Acid-Induced Unfolding of Cytochrome / c at Different Methanol Concentrations: Electrospray Ionization Mass Spectrometry Specifically Monitors Changes in the Tertiary Structure. / Biochemistry 1997, / 36, 12296-2302. CrossRef
    15. Konermann, L.; Douglas, D. J. Unfolding of Proteins Monitored by Electrospray Ionization Mass Spectrometry: A Comparison of Positive and Negative Ion Modes. / J. Am. Soc. Mass Spectrom. 1998, / 9, 1248-254. CrossRef
    16. Watt, S. J.; Oakley, A.; Sheil, M. M.; Beck, J. L. Comparison of Negative and Positive Ion Electrospray Ionization Mass Spectra of Calmodulin and Its Complex with Trifluoperazine. / Rapid Commun. Mass Spectrom. 2005, / 19, 2123-130. CrossRef
    17. Veenstra, T. D.; Johnson, K. L.; Tomlinson, A. J.; Naylor, S.; Kumar, R. Determination of Calcium-Binding Sites in Rat Brain Calbindin D28K by Electrospray Ionization Mass Spectrometry. / Biochemistry 1997, / 36, 3535-542. CrossRef
    18. Johnson, K. A.; Verhagen, M. F. J. M.; Adams, M. W. W.; Amster, I. J. Differences Between Positive and Negative Ion Stabilities of Metal-Sulfur Cluster Proteins: An Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Study. / Int. J. Mass Spectrom. 2001, / 204, 77-5. CrossRef
    19. White, S. W.; Zheng, J.; Zhang, Y. M.; Rock, C. O. The Structural Biology of Type II Fatty Acid Biosynthesis. / Annu. Rev. Biochem. 2005, / 74, 791-31. CrossRef
    20. Roujeinikova, A.; Baldock, C.; Simon, W. J.; Gilroy, J.; Baker, P. J.; Stuitje, A. R.; Rice, D. W.; Slabas, A. R.; Rafferty, J. B. X-Ray Crystallographic Studies on Butyryl-ACP Reveal Flexibility of the Structure Around a Putative Acyl Chain Binding Site. / Structure (Camb.) 2002, / 10, 825-35. CrossRef
    21. Zornetzer, G. A.; Fox, B. G.; Markely, J. L. Solution Structures of Spinach Acyl Carrier Protein with Decanoate and Stearate. / Biochemistry 2006, / 45, 5217-227. CrossRef
    22. de la Roche, M. A.; Shen, Z.; Byers, D. M. Hydrodynamic Properties of / Vibrio harveyi Acyl Carrier Protein and Its Fatty-Acylated Derivatives. / Arch. Biochem. Biophys. 1997, / 344, 159-64. CrossRef
    23. Flaman, A. S.; Chen, J. M.; Van Iderstine, S. C.; Byers, D. M. Site-Directed Mutagenesis of Acyl Carrier Protein (ACP) Reveals Amino Acid Residues Involved in ACP Structure and Acyl-ACP Synthetase activity. / J. Biol. Chem. 2001, / 276, 35934-5939. CrossRef
    24. Keating, M. M.; Gong, H.; Byers, D. M. Identification of a Key Residue in the Conformational Stability of Acyl Carrier Protein. / Biochim. Biophys. Acta 2002, / 1601, 208-14.
    25. Shen, Z.; Fice, D.; Byers, D. M. Preparation of Fatty-Acylated Derivative of Acyl Carrier Protein Using / Vibrio harveyi Acyl-ACP Synthetase. / Anal. Biochem. 1992, / 204, 34-9. CrossRef
    26. Gong, H.; Murphy, A.; McMaster, C. R.; Byers, D. M. Neutralization of Acidic Residues in Helix II Stabilizes the Folded Conformation of Acyl Carrier Protein and Variably Alters Its Function with Different Enzymes. / J. Biol. Chem. 2007, / 282, 4494-503. CrossRef
    27. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF. Chimera—A Visualization System for Exploratory Research and Analysis. / J. Comput. Chem. 2004, / 25, 1605-612. CrossRef
    28. Mayo, K. H.; Prestegard, J. H. Acyl Carrier Protein from / Escherichia coli: Structural Characterization of Short-Chain Acylated Acyl Carrier Proteins by NMR. / Biochemistry 1985, / 24, 7834-838. CrossRef
    29. Rock, C. O.; Cronan, J. E., Jr.; Armitage, I. M. Molecular Properties of Acyl Carrier Protein Derivatives. / J. Biol. Chem. 1981, / 256, 2669-674.
    30. Schulz, H. On the Structure-Function Relationship of Acyl Carrier Protein of / Escherichia coli. / J. Biol. Chem. 1975, / 250, 2299-304.
    31. Abzalimov, R. R.; Frimpong, A. K.; Kaltashov, I. A. Gas-Phase Processes and Measurements of Macromolecular Properties in Solution: On the Possibility of False Positive and False Negative Signals of Protein Unfolding. / Int. J. Mass Spectrom. 2006, / 253, 207-16. CrossRef
    32. Horvath, L. A.; Sturtevant, J. M.; Prestegard, J. H. Kinetics and Thermodynamics of Thermal Denaturation in Acyl Carrier Protein. / Protein Sci. 1994, / 3, 103-08. CrossRef
    33. Fink, A. L. Natively Unfolded Proteins. / Curr. Opin. Struct. Biol. 2005, / 15, 35-1. CrossRef
    34. Wright, P. E.; Dyson, H. J. Intrinsically Unstructured Proteins: Reassessing the Protein Structure-Function Paradigm. / J. Mol. Biol. 1999, / 293, 321-31. CrossRef
  • 作者单位:Peter W. Murphy (1)
    Elden E. Rowland (1)
    David M. Byers (1)

    1. Atlantic Research Centre, Department of Pediatrics, and Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
文摘
Electrospray ionization mass spectrometry (ESI-MS) can be used to monitor conformational changes of proteins in solution based on the charge state distribution (CSD) of the corresponding gas-phase ions, although relatively few studies of acidic proteins have been reported. Here, we have compared the CSD and solution structure of recombinant Vibrio harveyi acyl carrier protein (rACP), a small acidic protein whose secondary and tertiary structure can be manipulated by pH, fatty acylation, and site-directed mutagenesis. Circular dichroism and intrinsic fluorescence demonstrated that apo-rACP adopts a folded helical conformation in aqueous solution below pH 6 or in 50% acetonitrile/0.1% formic acid, but is unfolded at neutral and basic pH values. A rACP mutant, in which seven conserved acidic residues were replaced with their corresponding neutral amides, was folded over the entire pH range of 5 to 9. However, under the same solvent conditions, both wild type and mutant ACPs exhibited similar CSDs (6+-+ species) at all pH values. Covalent attachment of myristic acid to the phosphopantetheine prosthetic group of rACP, which is known to stabilize a folded conformation in solution, also had little influence on its CSD in either positive or negative ion modes. Overall, our results are consistent with ACP as a “natively unfolded-protein in a dynamic conformational equilibrium, which allows access to (de)protonation events during the electrospray process.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.