Knockdown of STIM1 Improves Neuronal Survival After Traumatic Neuronal Injury Through Regulating mGluR1-Dependent Ca2+ Signaling in Mouse Cortical Neurons
详细信息    查看全文
  • 作者:Peng-Fei Hou (1) (2)
    Zhan-Hui Liu (2)
    Nan Li (1) (3)
    Wen-Jia Cheng (4)
    Shi-Wen Guo (1)

    1. Department of Neurosurgery
    ; The First Affiliated Hospital of Xi鈥檃n Jiaotong University ; 277 West Yanta Road ; Xi鈥檃n ; 710061 ; Shaanxi ; China
    2. Department of Neurosurgery
    ; Ninth Hospital of Xi鈥檃n ; Xi鈥檃n ; 710054 ; Shaanxi ; China
    3. Department of Neurosurgery
    ; Xi鈥檃n Chidren鈥檚 Hospital ; Xi鈥檃n ; 710043 ; Shaanxi ; China
    4. Department of Pathology
    ; Ninth Hospital of Xi鈥檃n ; Xi鈥檃n ; 710054 ; Shaanxi ; China
  • 关键词:Traumatic brain injury ; STIM1 ; mGluR1 ; Endoplasmic reticulum
  • 刊名:Cellular and Molecular Neurobiology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:35
  • 期:2
  • 页码:283-292
  • 全文大小:1,251 KB
  • 参考文献:1. Abramov, AY, Duchen, MR (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 1777: pp. 953-964 CrossRef
    2. Algattas, H, Huang, JH (2014) Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 15: pp. 309-341 CrossRef
    3. Arundine, M, Tymianski, M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61: pp. 657-668 CrossRef
    4. Baba, Y, Kurosaki, T (2009) Physiological function and molecular basis of STIM1-mediated calcium entry in immune cells. Immunol Rev 231: pp. 174-188 CrossRef
    5. Batchelor, AM, Madge, DJ, Garthwaite, J (1994) Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63: pp. 911-915 CrossRef
    6. Belousov, AB (2012) Novel model for the mechanisms of glutamate-dependent excitotoxicity: role of neuronal gap junctions. Brain Res 1487: pp. 123-130 CrossRef
    7. Chen, T, Liu, W, Chao, X, Zhang, L, Qu, Y, Huo, J, Fei, Z (2011) Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice. Brain Res Bull 84: pp. 163-168 CrossRef
    8. Chen, T, Cao, L, Dong, W, Luo, P, Liu, W, Qu, Y, Fei, Z (2012) Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway. Neurochem Res 37: pp. 983-990 CrossRef
    9. Chen, T, Fei, F, Jiang, XF, Zhang, L, Qu, Y, Huo, K, Fei, Z (2012) Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free Radic Biol Med 52: pp. 208-217 CrossRef
    10. Chen, T, Zhang, L, Qu, Y, Huo, K, Jiang, X, Fei, Z (2012) The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway. Int J Mol Med 29: pp. 630-636
    11. Chen, T, Yang, YF, Luo, P, Liu, W, Dai, SH, Zheng, XR, Fei, Z, Jiang, XF (2013) Homer1 knockdown protects dopamine neurons through regulating calcium homeostasis in an in vitro model of Parkinson鈥檚 disease. Cell Signal 25: pp. 2863-2870 CrossRef
    12. Chen, T, Zhu, J, Zhang, C, Huo, K, Fei, Z, Jiang, XF (2013) Protective effects of SKF-96365, a non-specific inhibitor of SOCE, against MPP聽+聽-induced cytotoxicity in PC12 cells: potential role of Homer1. PLoS One 8: pp. e55601 CrossRef
    13. Cheng, G, Kong, RH, Zhang, LM, Zhang, JN (2012) Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 167: pp. 699-719 CrossRef
    14. Cucchiaroni, ML, Viscomi, MT, Bernardi, G, Molinari, M, Guatteo, E, Mercuri, NB (2010) Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-l-alanine on substantia nigra pars compacta DAergic neurons. J Neurosci 30: pp. 5176-5188 CrossRef
    15. Dziadek, MA, Johnstone, LS (2007) Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42: pp. 123-132 CrossRef
    16. Faden, AI, O鈥橪eary, DM, Fan, L, Bao, W, Mullins, PG, Movsesyan, VA (2001) Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improvesoOutcome after brain trauma. Exp Neurol 167: pp. 435-444 CrossRef
    17. Fahrner, M, Muik, M, Derler, I, Schindl, R, Fritsch, R, Frischauf, I, Romanin, C (2009) Mechanistic view on domains mediating STIM1-Orai coupling. Immunol Rev 231: pp. 99-112 CrossRef
    18. Fei, Z, Zhang, X, Jiang, XF, Huang, WD, Bai, HM (2005) Altered expression patterns of metabotropic glutamate receptors in diffuse brain injury. Neurosci Lett 380: pp. 280-283 CrossRef
    19. Fei, Z, Zhang, X, Bai, HM, Jiang, XF, Wang, XL (2006) Metabotropic glutamate receptor antagonists and agonists: potential neuroprotectors in diffuse brain injury. J Clin Neurosci 13: pp. 1023-1027 CrossRef
    20. Feyen, BF, Sener, S, Jorens, PG, Menovsky, T, Maas, AI (2012) Neuromonitoring in traumatic brain injury. Minerva Anestesiol 78: pp. 949-958
    21. Finch, EA, Augustine, GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396: pp. 753-756 CrossRef
    22. Ghajar, J (2000) Traumatic brain injury. Lancet 356: pp. 923-929 CrossRef
    23. Gong, QZ, Delahunty, TM, Hamm, RJ, Lyeth, BG (1995) Metabotropic glutamate antagonist, MCPG, treatment of traumatic brain injury in rats. Brain Res 700: pp. 299-302 CrossRef
    24. Goudet, C, Magnaghi, V, Landry, M, Nagy, F, Gereau, RWt, Pin, JP (2009) Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 60: pp. 43-56 CrossRef
    25. Gruszczynska-Biegala, J, Pomorski, P, Wisniewska, MB, Kuznicki, J (2011) Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 6: pp. e19285 CrossRef
    26. Harraz, OF, Altier, C (2014) STIM1-mediated bidirectional regulation of Ca(2聽+) entry through voltage-gated calcium channels (VGCC) and calcium-release activated channels (CRAC). Front Cell Neurosci 8: pp. 43 CrossRef
    27. Hartmann, J, Karl, RM, Alexander, RP, Adelsberger, H, Brill, MS, Ruhlmann, C, Ansel, A, Sakimura, K, Baba, Y, Kurosaki, T, Misgeld, T, Konnerth, A (2014) STIM1 controls neuronal Ca(2)(+) signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron 82: pp. 635-644 CrossRef
    28. Hayashi, MK, Tang, C, Verpelli, C, Narayanan, R, Stearns, MH, Xu, RM, Li, H, Sala, C, Hayashi, Y (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137: pp. 159-171 CrossRef
    29. Huang, WD, Fei, Z, Zhang, X (2005) Traumatic injury induced homer-1a gene expression in cultured cortical neurons of rat. Neurosci Lett 389: pp. 46-50 CrossRef
    30. Klejman, ME, Gruszczynska-Biegala, J, Skibinska-Kijek, A, Wisniewska, MB, Misztal, K, Blazejczyk, M, Bojarski, L, Kuznicki, J (2009) Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca(2聽+) store in neurons. Neurochem Int 54: pp. 49-55 CrossRef
    31. Lau, A, Tymianski, M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460: pp. 525-542 CrossRef
    32. Li, Y, Song, J, Liu, X, Zhang, M, An, J, Sun, P, Li, D, Jin, T, Wang, J (2013) High expression of STIM1 in the early stages of diffuse axonal injury. Brain Res 1495: pp. 95-102 CrossRef
    33. Li, B, Xiao, L, Wang, ZY, Zheng, PS (2014) Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radical Res 48: pp. 758-768 CrossRef
    34. Ng, AN, Krogh, M, Toresson, H (2011) Dendritic EGFP-STIM1 activation after type I metabotropic glutamate and muscarinic acetylcholine receptor stimulation in hippocampal neuron. J Neurosci Res 89: pp. 1235-1244 CrossRef
    35. O鈥橲hea, RD (2002) Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 29: pp. 1018-1023 CrossRef
    36. Parekh, AB, Putney, JW (2005) Store-operated calcium channels. Physiol Rev 85: pp. 757-810 CrossRef
    37. Potier, M, Gonzalez, JC, Motiani, RK, Abdullaev, IF, Bisaillon, JM, Singer, HA, Trebak, M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23: pp. 2425-2437 CrossRef
    38. Raghupathi, R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14: pp. 215-222 CrossRef
    39. Schindl, R, Muik, M, Fahrner, M, Derler, I, Fritsch, R, Bergsmann, J, Romanin, C (2009) Recent progress on STIM1 domains controlling Orai activation. Cell Calcium 46: pp. 227-232 CrossRef
    40. Smith, JS, Fulop, ZL, Levinsohn, SA, Darrell, RS, Stein, DG (2000) Effects of the novel NMDA receptor antagonist gacyclidine on recovery from medial frontal cortex contusion injury in rats. Neural plasticity 7: pp. 73-91 CrossRef
    41. Stoica, BA, Faden, AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7: pp. 3-12 CrossRef
    42. Stone, TW, Addae, JI (2002) The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol 447: pp. 285-296 CrossRef
    43. Urra, H, Dufey, E, Lisbona, F, Rojas-Rivera, D, Hetz, C (2013) When ER stress reaches a dead end. Biochimica Et Biophysica Acta 1833: pp. 3507-3517 CrossRef
    44. Worley, PF, Zeng, W, Huang, GN, Yuan, JP, Kim, JY, Lee, MG, Muallem, S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42: pp. 205-211 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Animal Anatomy, Morphology and Histology
  • 出版者:Springer Netherlands
  • ISSN:1573-6830
文摘
Activation of glutamate receptors and followed increase of intracellular calcium concentration is a key pathological mechanism involved in secondary neuronal injury after traumatic brain injury (TBI). Stromal interaction molecule (STIM) proteins are considered to be important players in regulating neuronal Ca2+ homeostasis under normal aging and pathological conditions. Here, we investigated the role of STIM1 in regulating metabotropic glutamate receptor 1 (mGluR1)-related Ca2+ signaling and neuronal survival by using an in vitro traumatic neuronal injury (TNI) model. The expression of STIM1 was significantly increased at both mRNA and protein levels after TNI. Down-regulation of STIM1 by specific small interfere RNA significantly preserved neuronal viability, decreased lactate dehydrogenase release, and inhibited apoptotic cell death after traumatic injury. Moreover, knockdown of STIM1 significantly alleviated the mGluR1-related increase of cytoplasmic Ca2+ levels after TNI. By analyzing Ca2+ imaging in Ca2+-free conditions, we demonstrated that the mGluR1-dependent inositol trisphosphate receptor and/or ryanodine receptor-mediated Ca2+ release from the endoplasmic reticulum after TNI is strongly attenuated in the absence of STIM1. Together, our results demonstrate that in the mammalian nervous system, STIM1 is a key regulator of mGluR1-dependent Ca2+ signaling and knockdown of STIM1 might be an effective intervention target in TBI.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.