Effect of chain length on the wetting properties of alkyltrichlorosilane coated cellulose-based paper
详细信息    查看全文
  • 作者:Zhenguan Tang ; Hanyang Li ; Dennis W. Hess ; Victor Breedveld
  • 关键词:Alkyltrichlorosilane ; Water repellency ; Superhydrophobic surface ; Methyltrimethoxysilane ; Octadecyltrichlorosilane
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1401-1413
  • 全文大小:1,938 KB
  • 参考文献:Aulin C, Shchukarev A, Lindqvist J, Malmstrom E, Wagberg L, Lindstrom T (2008) Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. J Colloid Interface Sci 317:556–567. doi:10.​1016/​j.​jcis.​2007.​09.​096 CrossRef
    Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790. doi:10.​1021/​la703766c CrossRef
    Bashouti MY, Sardashti K, Ristein J, Christiansen SH (2012) Early stages of oxide growth in h-terminated silicon nanowires: determination of kinetic behavior and activation energy. Phys Chem Chem Phys 14:11877–11881. doi:10.​1039/​c2cp41709j CrossRef
    Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58. doi:10.​1016/​0168-6445(94)90099-x CrossRef
    Bierbaum K, Kinzler M, Woll C, Grunze M, Hahner G, Heid S, Effenberger F (1995) A near-edge x-ray-absorption fine structure spectroscopy and x-ray photoelectron-spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized si(100). Langmuir 11:512–518. doi:10.​1021/​la00002a025 CrossRef
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. doi:10.​1016/​s0079-6700(98)00018-5 CrossRef
    Brzoska JB, Benazouz I, Rondelez F (1994) Silanization of solid substrates—a step toward reproducibility. Langmuir 10:4367–4373. doi:10.​1021/​la00023a072 CrossRef
    Cappelletto E et al (2012) Hydrophobic siloxane paper coatings: the effect of increasing methyl substitution. J Sol–Gel Sci Technol 62:441–452. doi:10.​1007/​s10971-012-2747-1 CrossRef
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–550. doi:10.​1039/​tf9444000546 CrossRef
    Chen LJ, Tsai YH, Liu CS, Chiou DR, Yeh MC (2001) Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica. Chem Phys Lett 346:241–245. doi:10.​1016/​s0009-2614(01)00971-x CrossRef
    Chibowski E (2011) Apparent surface free energy of superhydrophobic surfaces. J Adhes Sci Technol 25:1323–1336. doi:10.​1163/​016942411x555890​ CrossRef
    Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17:875–889. doi:10.​1007/​s10570-010-9434-6 CrossRef
    Cunha AG et al (2010) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction. J Colloid Interface Sci 344:588–595. doi:10.​1016/​j.​jcis.​2009.​12.​057 CrossRef
    de Oliveira Taipina MdO, Favaro Ferrarezi MM, Pagotto Yoshida IV, Goncalves MdC (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226. doi:10.​1007/​s10570-012-9820-3 CrossRef
    Desbief S, Patrone L, Goguenheim D, Guerin D, Vuillaume D (2011) Impact of chain length, temperature, and humidity on the growth of long alkyltrichlorosilane self-assembled monolayers. Phys Chem Chem Phys 13:2870–2879. doi:10.​1039/​c0cp01382j CrossRef
    Fadeev AY, McCarthy TJ (1999) Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15:3759–3766. doi:10.​1021/​la981486o CrossRef
    Fadeev AY, McCarthy TJ (2000) Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon. Langmuir 16:7268–7274. doi:10.​1021/​la000471z CrossRef
    Gao L, McCarthy TJ (2006) A perfectly hydrophobic surface (theta(a)/theta(r) = 180 degrees/180 degrees). J Am Chem Soc 128:9052–9053. doi:10.​1021/​ja062943n CrossRef
    He QH, Ma CC, Hu XQ, Chen HW (2013) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and uv/o-3-patterning. Anal Chem 85:1327–1331. doi:10.​1021/​ac303138x CrossRef
    Jesionowski T, Krysztafkiewicz A (2001) Influence of silane coupling agents on surface properties of precipitated silicas. Appl Surf Sci 172:18–32. doi:10.​1016/​s0169-4332(00)00828-x CrossRef
    Kessel CR, Granick S (1991) Formation and characterization of a highly ordered and well-anchored alkylsilane monolayer on mica by self-assembly. Langmuir 7:532–538. doi:10.​1021/​la00051a020 CrossRef
    Kulkami SA, Ogale SB, Vijayamohanan KP (2008) Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci 318:372–379. doi:10.​1016/​j.​jcis.​2007.​11.​012 CrossRef
    Kulkarni SA, Vijayamohanan KP (2007) Interfacial behavior of alkyltrichlorosilane monolayers on silicon: control of flat-band potential and surface state distribution using chain length variation. Surf Sci 601:2983–2993. doi:10.​1016/​j.​susc.​2007.​05.​003 CrossRef
    Kulkarni SA, Mirji SA, Mandale AB, Gupta RP, Vijayamohanan KP (2005) Growth kinetics and thermodynamic stability of octadecyltrichlorosilane self-assembled monolayer on si (100) substrate. Mater Lett 59:3890–3895. doi:10.​1016/​j.​matlet.​2005.​07.​026 CrossRef
    Launer PJ (2013) In: Arkles B, Larson GL (eds) Silicon compounds: Silanes & silicones, vol 1, 3rd edn. Gelest Inc., Morrisville, PA, pp 175–178
    Li L, Breedveld V, Hess DW (2013a) Design and fabrication of superamphiphobic paper surfaces. ACS Appl Mater Interfaces 5:5381–5386. doi:10.​1021/​am401436m CrossRef
    Li L, Roethel S, Breedveld V, Hess DW (2013b) Creation of low hysteresis superhydrophobic paper by deposition of hydrophilic diamond-like carbon films. Cellulose 20:3219–3226. doi:10.​1007/​s10570-013-0078-1 CrossRef
    Liu F, Ma ML, Zang DL, Gao ZX, Wang CY (2014) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. doi:10.​1016/​j.​carbpol.​2013.​12.​022 CrossRef
    Makowski T, Kowalczyk D, Fortuniak W, Jeziorska D, Brzezinski S, Tracz A (2014) Superhydrophobic properties of cotton woven fabrics with conducting 3d networks of multiwall carbon nanotubes, mwcnts. Cellulose 21:4659–4670. doi:10.​1007/​s10570-014-0422-0 CrossRef
    Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19:8343–8348. doi:10.​1021/​la0344682 CrossRef
    McGovern ME, Kallury KMR, Thompson M (1994) Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 10:3607–3614. doi:10.​1021/​la00022a038 CrossRef
    Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24. doi:10.​1002/​(sici)1439-2054(20000301)276:​1<1:​aid-mame1>3.​0.​co;2-w CrossRef
    Nevell T, Zdernian SH (1985) Cellulose chemistry and its applications. Ellis horwood series in chemical science, 1st edn. Wiley, New York
    Passoni L, Bonvini G, Luzio A, Facibeni A, Bottani CE, Di Fonzo F (2014) Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface. Langmuir 30:13581–13587. doi:10.​1021/​la503410m CrossRef
    Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942. doi:10.​1016/​j.​trac.​2009.​05.​005 CrossRef
    Rohrbach K, Li YY, Zhu HL, Liu Z, Dai JQ, Andreasen JL, Hu LB (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50:13296–13299. doi:10.​1039/​c4cc04817b CrossRef
    Sagiv J (1980) Organized monolayers by adsorption.1. Formation and structure of oleophobic mixed monolayers on solid-surfaces. J Am Chem Soc 102:92–98. doi:10.​1021/​ja00521a016 CrossRef
    Saraji M, Farajmand B (2013) Chemically modified cellulose paper as a thin film microextraction phase. J Chromatogr A 1314:24–30. doi:10.​1016/​j.​chroma.​2013.​09.​018 CrossRef
    Shirgholami MA, Shateri-Khalilabad M, Yazdanshenas ME (2013) Effect of reaction duration in the formation of superhydrophobic polymethylsilsesquioxane nanostructures on cotton fabric. Text Res J 83:100–110. doi:10.​1177/​0040517512444335​ CrossRef
    Szczepanski V, Vlassiouk I, Smirnov S (2006) Stability of silane modifiers on alumina nanoporous membranes. J Membr Sci 281:587–591. doi:10.​1016/​j.​memsci.​2006.​04.​027 CrossRef
    Tang Z, Hess DW, Breedveld V (2015) Fabrication of oleophobic paper with tunable hydrophilicity by treatment with non-fluorinated chemicals. J Mater Chem A 3:14651–14660. doi:10.​1039/​C5TA03520A CrossRef
    Verzele M, Mussche P (1983) Monomeric and polymeric derivatization in reversed-phase high-performance liquid-chromatographic materials. J Chromatogr 254:117–122. doi:10.​1016/​s0021-9673(01)88324-2 CrossRef
    Wang JY, Monton MRN, Zhang X, Filipe CDM, Pelton R, Brennan JD (2014) Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics. Lab Chip 14:691–695. doi:10.​1039/​c3lc51313k CrossRef
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. doi:10.​1021/​ie50320a024 CrossRef
    Yu M, Gu G, Meng W-D, Qing F-L (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253:3669–3673. doi:10.​1016/​j.​apsusc.​2006.​07.​086 CrossRef
    Zang DL, Liu F, Zhang M, Niu XG, Gao ZX, Wang CY (2015) Superhydrophobic coating on fiberglass cloth for selective removal of oil from water. Chem Eng J 262:210–216. doi:10.​1016/​j.​cej.​2014.​09.​082 CrossRef
    Zhu Z, Xu G, An Y, He C (2014) Construction of octadecyltrichlorosilane self-assembled monolayer on stainless steel 316 l surface. Colloids Surf A 457:408–413. doi:10.​1016/​j.​colsurfa.​2014.​06.​025 CrossRef
  • 作者单位:Zhenguan Tang (1) (2)
    Hanyang Li (1)
    Dennis W. Hess (1) (2)
    Victor Breedveld (1) (2)

    1. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
    2. Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA, 30318, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
The effect of alkyl chain length on the wetting properties of alkyltrichlorosilane coated cellulose-based paper is reported for four different reagents: methyltrichlorosilane (MTCS; –CH3), butyltrichlorosilane (BTCS; –C4H9), dodecyltrichlorosilane (DTCS; –C12H25) and octadecyltrichlorosilane (OTCS; –C18H37). SEM analysis reveals that by systematically varying alkyl chain length, films with different surface morphologies can be generated on flat silicon wafer control samples and on cellulose-based paper samples. The variation in surface morphology leads to different wetting behavior, as determined by measuring static water and oil contact angles. Due to the nano- and micron- scale roughness on MTCS coated substrates, paper samples coated with MTCS display superhydrophobicity with a water contact angle of 152.2°, which is the highest water contact angle among these four alkyltrichlorosilanes. However, additional nano-scale roughness from MTCS coating reduces the oil resistance of coated paper samples, while paper samples coated with long-chain alkyltrichlorosilanes have lower surface energy and also lack nano-scale roughness. As a result, paper samples coated with OTCS display the highest resistance against oils (ethylene glycol contact angle 125.5°; diiodomethane contact angle 101.3°). The intrinsic porosity of paper is largely retained after coating, as indicated by the fact that low surface tension fluids like methanol can easily penetrate coated paper samples.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.