Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects
详细信息    查看全文
  • 作者:Takumi Sakurada (1)
    Keisuke Ishizawa (2)
    Masaki Imanishi (1)
    Yuki Izawa-Ishizawa (1)
    Shoko Fujii (2)
    Erika Tominaga (1)
    Teppei Tsuneishi (1)
    Yuya Horinouchi (1)
    Yoshitaka Kihira (1)
    Yasumasa Ikeda (1)
    Shuhei Tomita (1)
    Ken-ichi Aihara (3)
    Kazuo Minakuchi (4)
    Koichiro Tsuchiya (2)
    Toshiaki Tamaki (1)
  • 关键词:Vascular remodeling ; Oxidative stress ; Vascular smooth muscle cells ; Angiotensin II ; Free radical scavengers
  • 刊名:Naunyn-Schmiedeberg's Archives of Pharmacology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:386
  • 期:1
  • 页码:29-39
  • 全文大小:602KB
  • 参考文献:1. Bauer V, Rekalov VV, Juránek I, Gergel D, Bohov P (1995) Effect of illuminated nifedipine, a potent antioxidant, on intestinal and vascular smooth muscles. Br J Pharmacol 115:871-74 CrossRef
    2. Beswick RA, Dorrance AM, Leite R, Webb RC (2001) NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38:1107-111 CrossRef
    3. Cowan DB, Langille BL (1996) Cellular and molecular biology of vascular remodeling. Curr Opin Lipidol 7:94-00 CrossRef
    4. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68:450-56 CrossRef
    5. Dixon BS, Sharma RV, Dickerson T, Fortune J (1994) Bradykinin and angiotensin II: activation of protein kinase C in arterial smooth muscle. Am J Physiol 266:C1406-420
    6. Ebrahimian T, Li MW, Lemarié CA, Simeone SM, Pagano PJ, Gaestel M, Paradis P, Wassmann S, Schiffrin EL (2011) Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension 57:245-54 CrossRef
    7. Folcik VA, Cathcart MK (1994) Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL. J Lipid Res 35:1570-582
    8. Fujii H, Berliner LJ (1999) In vivo EPR evidence for free radical adducts of nifedipine. Magn Reson Med 42:691-94 CrossRef
    9. Fukuhara Y, Tsuchiya K, Horinouchi Y, Tajima S, Kihira Y, Hamano S, Kawazoe K, Ikeda Y, Ishizawa K, Tomita S, Tamaki T (2011) Protective effect of photodegradation product of nifedipine against tumor necrosis factor alpha-induced oxidative stress in human glomerular endothelial cells. J Med Invest 58:118-26 CrossRef
    10. Furutani H, Zhang XF, Iwamuro Y, Lee K, Okamoto Y, Takikawa O, Fukao M, Masaki T, Miwa S (2002) Ca2+ entry channels involved in contractions of rat aorta induced by endothelin-1, noradrenaline, and vasopressin. J Cardiovasc Pharmacol 40:265-76 CrossRef
    11. Graf K, Xi XP, Yang D, Fleck E, Hsueh WA, Law RE (1997) Mitogen-activated protein kinase activation is involved in platelet-derived growth factor-directed migration by vascular smooth muscle cells. Hypertension 29:334-39 CrossRef
    12. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141-148 CrossRef
    13. Harrison DG (1997) Endothelial function and oxidant stress. Clin Cardiol 20: II-11-17
    14. Horinouchi Y, Tsuchiya K, Taoka C, Tajima S, Kihira Y, Matsuda Y, Shishido K, Yoshida M, Hamano S, Kawazoe K, Ikeda Y, Ishizawa K, Tomita S, Tamaki T (2011) Antioxidant effects of photodegradation product of nifedipine. Chem Pharm Bull (Tokyo) 59:208-14 CrossRef
    15. Ikeda Y, Aihara K, Yoshida S, Sato T, Yagi S, Iwase T, Sumitomo Y, Ise T, Ishikawa K, Azuma H, Akaike M, Kato S, Matsumoto T (2009) Androgen–androgen receptor system protects against angiotensin II-induced vascular remodeling. Endocrinology 150:2857-864 CrossRef
    16. Inaba S, Iwai M, Furuno M, Kanno H, Senba I, Okayama H, Mogi M, Higaki J, Horiuchi M (2011) Temporary treatment with AT1 receptor blocker, valsartan, from early stage of hypertension prevented vascular remodeling. Am J Hypertens 24:550-56 CrossRef
    17. Ishizawa K, Izawa Y, Ito H, Miki C, Miyata K, Fujita Y, Kanematsu Y, Tsuchiya K, Tamaki T, Nishiyama A, Yoshizumi M (2005) Aldosterone stimulates vascular smooth muscle cell proliferation via big mitogen-activated protein kinase 1 activation. Hypertension 46:1046-052 CrossRef
    18. Ishizawa K, Izawa-Ishizawa Y, Dorjsuren N, Miki E, Kihira Y, Ikeda Y, Hamano S, Kawazoe K, Minakuchi K, Tomita S, Tsuchiya K, Tamaki T (2010) Angiotensin II receptor blocker attenuates PDGF-induced mesangial cell migration in a receptor-independent manner. Nephrol Dial Transplant 25:364-72 CrossRef
    19. Ishizawa K, Yamaguchi K, Horinouchi Y, Fukuhara Y, Tajima S, Hamano S, Tomita S, Tsuchiya K, Tamaki T (2009) Drug discovery for overcoming chronic kidney disease (CKD): development of drugs on endothelial cell protection for overcoming CKD. J Pharmacol Sci 109:14-9 CrossRef
    20. Ishizawa K, Yoshizumi M, Tsuchiya K, Houchi H, Minakuchi K, Izawa Y, Kanematsu Y, Kagami S, Hirose M, Tamaki T (2004) Dual effects of endothelin-1 (1-1): induction of mesangial cell migration and facilitation of monocyte recruitment through monocyte chemoattractant protein-1 production by mesangial cells. Hypertens Res 27:433-40 CrossRef
    21. Izawa Y, Yoshizumi M, Fujita Y, Ali N, Kanematsu Y, Ishizawa K, Tsuchiya K, Obata T, Ebina Y, Tomita S, Tamaki T (2005) ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells. Exp Cell Res 308:291-99 CrossRef
    22. Kurobe H, Urata M, Ueno M, Ueki M, Ono S, Izawa-Ishizawa Y, Fukuhara Y, Lei Y, Ripen AM, Kanbara T, Aihara K, Ishizawa K, Akaike M, Gonzalez FJ, Tamaki T, Takahama Y, Yoshizumi M, Kitagawa T, Tomita S (2010) Role of hypoxia-inducible factor 1alpha in T cells as a negative regulator in development of vascular remodeling. Arterioscler Thromb Vasc Biol 30:210-17 CrossRef
    23. Letavernier E, Perez J, Bellocq A, Mesnard L, de Castro KA, Haymann JP, Baud L (2008) Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ Res 102:720-28 CrossRef
    24. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82-7 CrossRef
    25. Misík V, Stasko A, Gerge? D, Ondrias K (1991) Spin-trapping and antioxidant properties of illuminated and nonilluminated nifedipine and nimodipine in heart homogenate and model system. Mol Pharmacol 40:435-39
    26. Mollnau H, Wendt M, Sz?cs K, Lassègue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, F?rstermann U, Meinertz T, Griendling K, Münzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58-5 CrossRef
    27. Ohkubo T, Noro H, Sugawara K (1992) High-performance liquid chromatographic determination of nifedipine and a trace photodegradation product in hospital prescriptions. J Pharm Biomed Anal 10:67-0 CrossRef
    28. Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovasc Res 71:247-58 CrossRef
    29. Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):S170-80 CrossRef
    30. Park YM, Park MY, Suh YL, Park JB (2004) NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem Biophys Res Commun 313:812-17 CrossRef
    31. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916-923 CrossRef
    32. Saward L, Zahradka P (1997) Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81:249-57 CrossRef
    33. Schwartz SM, deBlois D, O'Brien ER (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445-65 CrossRef
    34. Stasko A, Brezová V, Biskupic S, Ondrias K, Misík V (1994) Reactive radical intermediates formed from illuminated nifedipine. Free Radic Biol Med 17:545-56 CrossRef
    35. Tieu BC, Ju X, Lee C, Sun H, Lejeune W, Recinos A, Brasier AR, Tilton RG (2011) Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling. J Vasc Res 48:261-72 CrossRef
    36. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22:535-42 CrossRef
    37. Wei Y, Whaley-Connell AT, Chen K, Habibi J, Uptergrove GM, Clark SE, Stump CS, Ferrario CM, Sowers JR (2007) NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension 50:384-91 CrossRef
    38. Yang X, Zhu MJ, Sreejayan N, Ren J, Du M (2005) Angiotensin II promotes smooth muscle cell proliferation and migration through release of heparin-binding epidermal growth factor and activation of EGF-receptor pathway. Mol Cells 20:263-70 CrossRef
    39. Yoshizumi M, Tsuchiya K, Suzaki Y, Kirima K, Kyaw M, Moon JH, Terao J, Tamaki T (2002) Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem Biophys Res Commun 293:1458-465 CrossRef
    40. Yá?ez C, López-Alarcón C, Camargo C, Valenzuela V, Squella JA, Nú?ez-Vergara LJ (2004) Structural effects on the reactivity 1,4-dihydropyridines with alkylperoxyl radicals and ABTS radical cation. Bioorg Med Chem 12:2459-468 CrossRef
  • 作者单位:Takumi Sakurada (1)
    Keisuke Ishizawa (2)
    Masaki Imanishi (1)
    Yuki Izawa-Ishizawa (1)
    Shoko Fujii (2)
    Erika Tominaga (1)
    Teppei Tsuneishi (1)
    Yuya Horinouchi (1)
    Yoshitaka Kihira (1)
    Yasumasa Ikeda (1)
    Shuhei Tomita (1)
    Ken-ichi Aihara (3)
    Kazuo Minakuchi (4)
    Koichiro Tsuchiya (2)
    Toshiaki Tamaki (1)

    1. Department of Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
    2. Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78-1, Shoumachi, Tokushima, 770-8505, Japan
    3. Department of Medicine and Bioregulatory Sciences, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
    4. Department of Clinical Pharmacy, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
  • ISSN:1432-1912
文摘
Nifedipine is unstable under light and decomposes to a stable nitroso analog, nitrosonifedipine (NO-NIF). The ability of NO-NIF to block calcium channels is quite weak compared with that of nifedipine. Recently, we have demonstrated that NO-NIF reacts with unsaturated fatty acid leading to generate NO-NIF radical, which acquires radical scavenging activity. However, the effects of NO-NIF on the pathogenesis related with oxidative stress, such as atherosclerosis and hypertension, are unclear. In this study, we investigated the effects of NO-NIF on angiotensin II (Ang II)-induced vascular remodeling. Ang II-induced thickening and fibrosis of aorta were inhibited by NO-NIF in mice. NO-NIF decreased reactive oxygen species (ROS) in the aorta and urinary 8-hydroxy-20-deoxyguanosine. Ang II-stimulated mRNA expressions of p22phox, CD68, F4/80, monocyte chemoattractant protein-1, and collagen I in the aorta were inhibited by NO-NIF. Moreover, NO-NIF inhibited Ang II-induced cell migration and proliferation of vascular smooth muscle cells (VSMCs). NO-NIF reduced Ang II-induced ROS to the control level detected by dihydroethidium staining and lucigenin chemiluminescence assay in VSMCs. NO-NIF suppressed phosphorylations of Akt and epidermal growth factor receptor induced by Ang II. However, NO-NIF had no effects on intracellular Ca2+ increase and protein kinase C-δ phosphorylation induced by Ang II in VSMCs. The electron paramagnetic resonance spectra indicated the continuous generation of NO-NIF radical of reaction with cultured VSMCs. These findings suggest that NO-NIF improves Ang II-induced vascular remodeling via the attenuation of oxidative stress.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.