Relationship between Hypoxia and Macrobenthic Production in Chesapeake Bay
详细信息    查看全文
  • 作者:S. Kersey Sturdivant (1)
    Robert J. Díaz (2)
    Roberto Llansó (3)
    Daniel M. Dauer (4)
  • 关键词:Estuary ; Energy flow ; Benthos ; Oxygen depletion ; Secondary production
  • 刊名:Estuaries and Coasts
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:37
  • 期:5
  • 页码:1219-1232
  • 全文大小:4,638 KB
  • 参考文献:1. Agnew, D.J., and M.B. Jones. 1986. Metabolic adaptations of / Gammarus duebeni Liljeborg (crustacean, amphipoda) to hypoxia in a sewage-treatment plant. / Comparative Biochemistry Physiology A 84: 475-78. CrossRef
    2. Alden III, R.W., D.M. Dauer, J.A. Ranasinghe, L.C. Scott, and R.J. Llansó. 2002. Statistical verification of the Chesapeake Bay benthic index of biotic integrity. / Environmetrics 13: 473-98. CrossRef
    3. Altieri, A.H. 2008. Dead zone enhance key fisheries species by providing predation refuge. / Ecology 89: 2808-818. CrossRef
    4. Arias, A.M., and P. Drake. 1994. Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cadiz. / Marine Ecology Progress Series 115: 151-67. CrossRef
    5. Baird, D., and H. Milne. 1981. Energy flow in the Ythan Estuary, Aberdeenshine, Scotland. / Estuarine and Coastal Shelf Science 12: 455-72. CrossRef
    6. Baird, D., R.R. Christian, C.H. Peterson, and G.A. Johnson. 2004. Consequences of hypoxia on estuarine ecosystems function: energy diversion from consumers to microbes. / Ecological Applications 14: 805-22. CrossRef
    7. Banse, K., and S. Mosher. 1980. Adult body mass and annual production/biomass relationships of field populations. / Ecological Monographs 50: 353-79. CrossRef
    8. Blake, R.E., and J.E. Duffy. 2012. Changes in biodiversity and environmental stressors influence community structure of an experimental eelgrass / Zostera marina system. / Marine Ecology Progress Series 470: 41-4. CrossRef
    9. Blumenshine, S.C., and W.M. Kemp. 2000. Food versus habitat and limitation for benthic macrofauna in mesohaline regions of Chesapeake Bay. Ecosystem models of the Chesapeake Bay relating nutrient loadings, environmental conditions, and living resources. Final Report 1998-999, Chapter I; University of Maryland Center for Environmental Science, Maryland. http://www.chesapeakebay.net/content/publications/cbp_13028.pdf
    10. Boesch, D.F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. / Marine Biology 21: 226-44. CrossRef
    11. Boesch, D.F. 2000. Measuring the health of the Chesapeake Bay: Toward integration and prediction. / Environmental Research Section A 82: 134-42. CrossRef
    12. Bologna, P.A., and K. Heck Jr. 2002. Impact of habitat edges on density and secondary production of seagrass-associated fauna. / Estuaries 25: 1033-044. CrossRef
    13. Breitburg, D.L. 1990. Near-shore hypoxia in the Chesapeake Bay: patterns and relationships among physical factors. / Estuarine, Coastal and Shelf Science 30: 593-09. CrossRef
    14. Breitburg, D.L. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. / Estuaries 25: 767-81. CrossRef
    15. Breitburg, D.L., A. Adamack, K.A. Rose, S.E. Kolesar, M.B. Decker, J.E. Purcell, J.E. Keister, and J.H. Cowan Jr. 2003. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. / Estuaries 26: 280-97. CrossRef
    16. Brey, T. 1990. Estimating productivity of macroinvertebrates from biomass and mean individual weight. / Meeresforschung 32: 329-43.
    17. Brey, T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2 http://www.awibremerhaven.de/Benthic/Ecosystem/FoodWeb/Handbook/main.html. Alfred Wegener Institute for Polar and Marine Research, Germany.
    18. Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage, and G.B. West. 2004. Toward a metabolic theory of ecology. / Ecology 85: 1771-789. CrossRef
    19. Cooksey, C., and J. Hyland. 2007. Sediment quality of the Lower St. Johns River, Florida: an integrative assessment of benthic fauna, sediment-associated stressors, and general habitat characteristics. / Marine Pollution Bulletin 54: 9-1. CrossRef
    20. Cowles, A., J.E. Hewitt, and R.B. Taylor. 2009. Density, biomass and productivity of small mobile invertebrates in a wide range of coastal habitats. / Marine Ecology Progress Series 384: 175-85. CrossRef
    21. Craig, J.K., and L.B. Crowder. 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. / Marine Ecology Progress Series 294: 79-4. CrossRef
    22. Cusson, M., and E. Bourget. 2005. Global patterns of macroinvertebrate production in marine benthic habitats. / Marine Ecology Progress Series 297: 1-4. CrossRef
    23. Danovaro, R., A. Dell'Anno, A. Pusceddu, C. Gambi, I. Heiner, et al. 2010. The first metazoa living in permanently anoxic conditions. / BioMedical Central Biology 8: 1-0.
    24. Dauer, D.M., and R.J. Llansó. 2003. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay. / Environmental Monitoring and Assessment 81: 175-86. CrossRef
    25. Dauer, D.M., A.J. Rodi Jr., and J.A. Ranasinghe. 1992. Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay. / Estuaries 15: 384-91. CrossRef
    26. Diaz, R.J. 2001. Overview of hypoxia around the world. / Journal of Environmental Quality 30: 275-81. CrossRef
    27. Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. / Oceanography and Marine Biology an Annual Review 33: 245-03.
    28. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. / Science 321: 926-29. CrossRef
    29. Diaz, R.J., and L.C. Schaffner. 1990. The functional role of estuarine benthos. In / Perspectives on the Chesapeake Bay: Advances in estuarine sciences, ed. M. Haire and E.C. Krome, 25-6. Virginia: Chesapeake Research Consortium.
    30. Diaz, R.J., R.J. Neubauer, L.C. Schaffner, L. Pihl, and S.P. Baden. 1992. Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. / Science of the Total Environment 1: 1055-068.
    31. Dolbeth, M., A.I. Lillebo, P.G. Cardoso, S.M. Ferreira, and M.A. Pardal. 2005. Annual production of estuarine fauna in different environmental conditions: an evaluation of the estimation methods. / Journal of Experimental Marine Biology Ecology 326: 115-27. CrossRef
    32. Dolbeth, M., M. Cusson, R. Sousa, and M.A. Pardal. 2012. Secondary production as a tool for better understanding of aquatic ecosystems. / Canadian Journal of Fisheries and Aquatic Sciences 69: 1230-253. CrossRef
    33. Douglass, J.G., K.E. France, J.P. Richardson, and J.E. Duffy. 2010. Seasonal and interannual change in a Chesapeake Bay eelgrass community: insights into biotic and abiotic control of community structure. / Limnology Oceanography 55: 1499-520. CrossRef
    34. Edgar, G.J. 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. / Journal of Experimental Marine Biology Ecology 137: 195-14. CrossRef
    35. Edgar, G.J., and N.S. Barrett. 2002. Benthic macrofauna in Tasmanian estuaries: scales of distribution and relationships with environmental variables. / Journal of Experimental Marine Biology Ecology 270: 1-4. CrossRef
    36. Edgar, G.J., C. Shaw, G.F. Watson, and L.S. Hammond. 1994. Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. / Journal of Experimental Marine Biology and Ecology 176: 201-26. CrossRef
    37. Folk, R.L. 1973. Carbonate petrography in the post-Sorbian age. In / Evolving concepts in sedimentology, ed. R.N. Ginsburg, 1-0. Maryland: Johns Hopkins University Press.
    38. Hagy, J.D. 2002. Eutrophication, hypoxia, and trophic transfer efficiency in Chesapeake Bay. Ph.D. dissertation, University of Maryland, College Park, MD
    39. Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950-001: Long-term change in relation to nutrient loading and river flow. / Estuaries 37: 634-58. CrossRef
    40. Hoback, W.W., and M.C. Barnhart. 1996. Lethal limits and sublethal effects of hypoxia on the amphipod / Gammarus pseudolimnaeus. Journal of North American Benthological Society 15: 117-26. CrossRef
    41. Holland, A.F., A.T. Shaughnessy, L.C. Scott, V.A. Dickens, J. Gerritsen, and J.A. Ranainghe. 1988. / Long-term benthic monitoring and assessment program for the Maryland portion of Chesapeake Bay: Interpretive report. Maryland Department of Natural Resources: Power Plant Research Program.
    42. Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, et al. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. / Marine Ecology Progress Series 303: 1-9. CrossRef
    43. Kuo, A.Y., and B.J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries. / Estuaries 10: 277-83. CrossRef
    44. Kuo, A.Y., K. Park, and M.Z. Moustafa. 1991. Spatial and temporal variabilities of hypoxia in the Rappahannock River, Virginia. / Estuaries 14: 113-21. CrossRef
    45. Levin, L.A., W. Ekau, A.J. Gooday, F. Jorissen, J.J. Middelburg, et al. 2009. Effects of natural and human-induced hypoxia on coastal benthos. / Biogeosciences 6: 2063-098. CrossRef
    46. Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. / Ecology 23: 399-18. CrossRef
    47. Llansó, R.J. 1991. Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete / Steblospio benedicti (Webster). / Journal of Experimental Marine Biology Ecology 153: 165-78. CrossRef
    48. Llansó, R.J. 1992. Effects of hypoxia on estuarine benthos: the lower Rappahannock River (Chesapeake Bay), a case study. / Estuarine and Coastal Shelf Science 35: 491-15. CrossRef
    49. Lohrenz, M.E., M.J. Dag, and T.E. Whitledge. 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River. / Continental Shelf Research 10: 639-64. CrossRef
    50. Long, W.C., B.J. Brylawski, and R.D. Seitz. 2008. Behavioral effects of low dissolved oxygen on the bivalve / Macoma balthica. Journal of Experimental Marine Biology Ecology 359: 34-9. CrossRef
    51. Ludsin, S.A., X. Zhang, S.B. Brandt, M.R. Roman, W.C. Boucourt, et al. 2009. Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: Implication for food web interaction and fish recruitment. / Journal of Experimental Marine Biology Ecology 381: 121-31. CrossRef
    52. M?ller, P., L. Pihl, and R. Rosenberg. 1985. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. / Marine Ecology Progress Series 27: 109-21. CrossRef
    53. Morin, A., and N. Bourassa. 1992. Modèles empiriques de la production annuelle et du rapport P/B d'inverteébrés benthiques d'eau courantes. / Canadian Journal of Fisheries and Aquatic Sciences 49: 532-39. CrossRef
    54. Murphy, R.R., W.M. Kemp, and W.P. Ball. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. / Estuaries and Coasts 34: 1293-309. CrossRef
    55. Nestlerode, J.A., and R.J. Diaz. 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete, / Glycera americana: implication for trophic dynamics. / Marine Ecology Progress Series 172: 185-95. CrossRef
    56. Newcombe, C.L., W.A. Horne, and B.B. Shepherd. 1939. Studies on the physics and chemistry of estuarine waters in Chesapeake Bay. / Journal of Marine Research 2: 87-16. CrossRef
    57. Nichols, F.H. 1977. Dynamics and production of / Pectinaria koreni (Malmgren) in Kiel Bay, West Germany. In / Biology of benthic organisms, ed. B.F. Keegan, P.O. Ceidigh, and P.J.S. Boaden, 453-63. Oxford: Pergamon Press. CrossRef
    58. Nilsen, M., T. Pedersen, and E.M. Nilssen. 2006. Macrobenthic biomass, productivity (P/B) and production in a high-latitude ecosystem, North Norway. / Marine Ecology Progress Series 321: 67-7. CrossRef
    59. Nixon, S.W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. / Ophelia 41: 199-19.
    60. Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton. 1984. Chesapeake Bay anoxia: origin, development, and significance. / Science 223: 22-7. CrossRef
    61. Park, K., A.Y. Kuo, and J. Neilson. 1996. A numerical model study of hypoxia in the tidal Rappahannock River of Chesapeake Bay. / Estuarine Coastal Shelf Science 42: 563-81. CrossRef
    62. Pearson, T.H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. / Oceanography and Marine Biology, an Annual Review 16: 229-11.
    63. Perkins, E.J. 1974. / The biology of estuaries and coastal waters. London: Academic.
    64. Pihl, L., S.P. Baden, and R.J. Diaz. 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. / Marine Biology 108: 349-60. CrossRef
    65. Pihl, L., S.P. Baden, R.J. Diaz, and L.C. Schaffner. 1992. Hypoxia-induced structural changes in the diet of bottom feeding fish and crustacea. / Marine Biology 112: 349-61. CrossRef
    66. Plante, C., and J.A. Downing. 1989. Production of freshwater invertebrate populations in lakes. / Canadian Journal of Fisheries and Aquatic Sciences 46: 1489-498. CrossRef
    67. Rabalais, N.N. 2004. Eutrophication. In / The Global Coastal Ocean Multiscale Interdisciplinary Processes, The Sea, vol. 13, ed. A.R. Robinson, J. McCarthy, and B.J. Rothschild, 1-6. Boston: Harvard University Press.
    68. Rakocinski, C.F. 2012. Evaluating macrobenthic process indicators in relation to organic enrichment and hypoxia. / Ecological Indicators 13: 1-2. CrossRef
    69. Robertson, A.I. 1979. The relationship between annual production: biomass ratios and lifespans for marine macrobenthos. / Oecologia 38: 193-02. CrossRef
    70. Rosenberg, R. 1972. Benthic faunal recovery in a Swedish fjord following the closure of a sulphite pulp mill. / Oikos 23: 92-08. CrossRef
    71. Sale, J.W., and W.W. Skinner. 1917. The vertical distribution of dissolved oxygen and the precipitation of salt water in certain tidal areas. / Franklin Institute Journal 184: 837-48. CrossRef
    72. SAS Institute. 1989. / SAS/STAT? User's Guide, Version 6. 4th edn, Oxford Oxford, Vol. 2. Cary: SAS Institute.
    73. Schwinghammer, P., and B. Hargrave. 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. / Marine Ecology Progress Series 31: 131-42. CrossRef
    74. Seitz, R.D., L.S. Marshall Jr., A.H. Hines, and K.L. Clark. 2003. Effects of hypoxia on predator-prey dynamics of the blue crab / Callinectes sapidus and the Baltic clam / Macoma balthica in Chesapeake Bay. / Marine Ecology Progress Series 257: 179-88. CrossRef
    75. Seitz, R.D., D.M. Dauer, R.M. Llansó, and W.C. Long. 2009. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. / Journal of Experimental Marine Biology Ecology 381: 4-2. CrossRef
    76. Sprung, M. 1993. Estimating macrobenthic secondary production from body weight and biomass: a field test in a non-boreal intertidal habitat. / Marine Ecology Progress Series 100: 103-09. CrossRef
    77. Stow, C.A., and D. Scavia. 2009. Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model. / Journal of Marine Systems 76: 244-50. CrossRef
    78. Sturdivant, S.K., R.J. Diaz, and G.R. Cutter. 2012. Bioturbation in a declining oxygen environment, / in situ observations from Wormcam. / Public Library of Science ONE 7(4): e34539. doi:10.1371/e34539 .
    79. Sturdivant, S.K., R.D. Seitz, and R.J. Diaz. 2013. Effects of seasonal hypoxia on macrobenthic production and function in the Rappahannock River, Virginia, USA. / Marine Ecology Progress Series 490: 53-8. CrossRef
    80. Telesh, I.V., and V.V. Khlebovich. 2010. Principal processes within estuarine salinity gradient: A review. / Marine Pollution Bulletin 61: 149-55. CrossRef
    81. Theede, H., A. Ponat, K. Hiroki, and C. Schliper. 1969. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. / Marine Biology 2: 325-37. CrossRef
    82. Torrans, E.L., and H.P. Clemens. 1982. Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. / Comparative Biochemistry Physiology 71: 183-90.
    83. Tumbiolo, M.L., and J.A. Downing. 1994. An empirical model for the prediction of secondary production in marine benthic invertebrate populations. / Marine Ecology Progress Series 114: 165-74. CrossRef
    84. Turner, R.E., N.N. Rabalais, and D. Justic. 2012. Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P, and Si loading. / Marine Pollution Bulletin 64: 319-24. CrossRef
    85. Tyson, R.V., and T.H. Pearson. 1991. Modern and ancient continental shelf anoxia: an overview. / Geological Society Special Publication 55: 1-4. CrossRef
    86. van Colen, C., F. Montserrat, M. Vincx, P.M.J. Herman, T. Ysebaert, and S. Degraer. 2010. Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality. / Marine Pollution Bulletin 60: 178-86. CrossRef
    87. Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. / Proceedings of the National Academy of Sciences 105: 15452-5457. CrossRef
    88. Vaquer-Sunyer, R., and C.M. Duarte. 2010. Sulfide exposure accelerates hypoxia-driven mortality. / Limnology and Oceanography 55: 1075-082. CrossRef
    89. Vissman, B. 1990. Sulfide detoxification and tolerance in / Nereis ( / Hediste) / diversicolor and / Nereis ( / Neanthes) / virens (Annelida: Polychaeta). / Marine Ecology Progress Series 59: 229-38. CrossRef
    90. Wannamaker, C.M., and J.A. Rice. 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. / Journal of Experimental Marine Biology Ecology 249: 145-63. CrossRef
    91. Warren, L.M. 1977. The ecology of / Capitella capitata in British water. / Journal of Marine Biological Assessment UK 57: 151-59. CrossRef
    92. Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner, R.J. Diaz, and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. / Estuaries 20: 149-58. CrossRef
    93. Wilber, D.H., and D.G. Clarke. 1998. Estimating secondary production and benthic consumption in monitoring studies: a case study of the impacts of dredged material disposal in Galveston Bay, Texas. / Estuaries 21: 230-45. CrossRef
    94. Winn, R.N., and D.M. Knott. 1992. An evaluation of the survival of experimental populations exposed to hypoxia in the Savannah River estuary. / Marine Ecology Progress Series 88: 161-79. CrossRef
    95. Zar, J.H. 1999. / Biostatistical Analysis, 4th ed. New Jersey: Prentice Hall.
    96. Zeger, S.L., K.Y. Liang, and P.S. Albert. 1988. Models for longitudinal data: A generalized estimation equation approach. / Biometrics 44: 1049-060. CrossRef
    97. Zimmerman, A.R., and E.A. Canuel. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. / Marine Chemistry 69: 117-37. CrossRef
  • 作者单位:S. Kersey Sturdivant (1)
    Robert J. Díaz (2)
    Roberto Llansó (3)
    Daniel M. Dauer (4)

    1. Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Rd., Beaufort, NC, 28516, USA
    2. Virginia Institute of Marine Science, College of William and Mary, Route 1208 Greate Road, Gloucester Pt., VA, 23062, USA
    3. Versar, 9200 Rumsey Rd, Columbia, MD, 21045, USA
    4. Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
  • ISSN:1559-2731
文摘
Human development has degraded Chesapeake Bay's health, resulting in an increase in the extent and severity of hypoxia (??mg O2 l-1). The Bay's hypoxic zones have an adverse effect on both community structure and secondary production of macrobenthos. From 1996 to 2004, the effect of hypoxia on macrobenthic production was assessed in Chesapeake Bay and its three main tributaries (Potomac, Rappahannock, and York Rivers). Each year, in the summer (late July???early September), 25 random samples of the benthic macrofauna were collected from each system, and macrobenthic production in the polyhaline and mesohaline regions was estimated using Edgar's allometric equation. Fluctuations in macrobenthic production were significantly correlated with dissolved oxygen. Macrobenthic production was 90?% lower during hypoxia relative to normoxia. As a result, there was a biomass loss of ~7,320-3,200 metric tons C over an area of 7,720?km2, which is estimated to equate to a 20?% to 35?% displacement of the Bay's macrobenthic productivity during the summer. While higher consumers may benefit from easy access to stressed prey in some areas, the large spatial and temporal extent of seasonal hypoxia limits higher trophic level transfer, via the inhibition of macrobenthic production. Such a massive loss of macrobenthic production would be detrimental to the overall health of the Bay, as it comes at a time when epibenthic and demersal predators have high-energy demands.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.