Predicting Drug Substances Autoxidation
详细信息    查看全文
  • 作者:P. Lienard (1)
    J. Gavartin (2)
    G. Boccardi (3) (4)
    M. Meunier (2)

    1. Pharmaceutical Science Department
    ; Sanofi R&D ; 13 Quai Jules Guesde ; 94403 ; Vitry-sur-Seine Cedex ; France
    2. Accelrys
    ; 334 Milton Road Science Park ; Cambridge ; CB4 0WN ; UK
    3. Analytical Sciences
    ; Sanofi Research Centre of Milan ; Piranesi ; 38 ; 20137 ; Milan ; Italy
    4. Institute for Chemical and Biochemical Research via G. Colombo 81
    ; 20133 ; Milan ; Italy
  • 关键词:Degradation ; Autoxidation ; Computational chemistry ; Pharmaceutical ; DFT
  • 刊名:Pharmaceutical Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:32
  • 期:1
  • 页码:300-310
  • 全文大小:791 KB
  • 参考文献:1. Gardner CR, Walsh TC, Almarsson O. Drugs as materials: valuing physical form in drug discovery. Nat Rev Drug Discov. 2004;3:926鈥?4. CrossRef
    2. Palucki M, Higgins JD, Kwong E, Templeton AC. Strategies at the interface of drug discovery and development: early optimization of the solid state phase and preclinical toxicology formulation for potential drug candidates. J Med Chem. 2010;53(16):5897鈥?05. CrossRef
    3. Gorman EM, Padden BE, Munson EJ. Stability: Physical and Chemical. 2008; Wiley & Sons Inc. in Gad SC 鈥淧reclinical Development handbook: ADME and biopharmaceutical properties鈥?Chapter 16, 545鈥?70
    4. Florence AT, Attwood D. Physicochemical principles of pharmacy. 5th ed. London: Pharmaceutical Press; 2011.
    5. Bundgaard H, Larsen C. Piperazinedione formation from reaction of ampicillin with carbohydrates and alcohols in aqueous solutions. Int J Pharm. 1979;3:1鈥?1. 44-9" target="_blank" title="It opens in new window">CrossRef
    6. Baertschi SW, Pharmaceutical stress testing: predicting drug degradation. Taylor and Fran莽is informa vol 153 Healthcare; 2005
    7. Guidance for Industry Q1A(R2) Stability testing of new drug substances and products U.S. Department of health and human services food and drug administration, November 2003
    8. Kieffer J, Bremond E, Lienard L, Boccardi G. In silico assessment of drug substances chemical stability. J Mol Struct THEOCHEM. 2010;954:75鈥?. CrossRef
    9. Parr RG, Yang W. Density-functional theory of atoms and molecules. New York: Oxford University Press; 1989.
    10. Boccardi G, Deleuze C, Gachon M, Palmisano G, Vergnaud JP. Autoxidation of tetrazepam in tablets: prediction of the degradation impurities from the oxidative behaviour in solution. J Pharm Sci. 1992;81:183鈥?. CrossRef
    11. P. Harmon and G. Boccardi, Oxidative susceptibility testing, in: S. W. Baertschi, K. M. Alsante, R.R. Red, ed., Pharmaceutical stress testing - predicting drug degradation, Informa, 2011.
    12. Blanksby SJ, Ellison GB. Bond dissociation energies of organic molecules. Acc Chem Res. 2002;36:255鈥?3. CrossRef
    13. Sharp TR. Calculated carbon鈥揾ydrogen bond dissociation enthalpies for predicting oxidative susceptibility of drug substance molecules. Int J Pharm. 2011;418:304鈥?7. 4.063" target="_blank" title="It opens in new window">CrossRef
    14. Rocha GB, Freire RO, Simas AM, Stewart JJP. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comput Chem. 2006;27:1101鈥?1. doi:10.1002/jcc.20425 . 425" target="_blank" title="It opens in new window">CrossRef
    15. Michael J. S. Dewar,* Eve G. Zoebisch, Eamonn F. Healy, and James J. P. Stewart AM1: A new general purpose quantum mechanical molecular model鈥?J. Am.Chem.Soc 107, 3902-3909
    16. Gryn鈥檕va G, Hodgson JL, Coote M. Revising the mechanism of polymer autooxidation. Org Biomol Chem. 2011;9:480鈥?0. CrossRef
    17. Benson SW. Effects of resonance and structure on the thermochemistry of organic peroxy radicals and the kinetics of combustion reactions. J Am Chem Soc. 1965;87:972鈥?. CrossRef
    18. Bolland JL, Gee G. Trans Faraday Soc. 1946;42:244. 464200244" target="_blank" title="It opens in new window">CrossRef
    19. Reid DL, Calvitt JC, Zell MT, Miller KG, Kingsmill CA. Early prediction of pharmaceutical oxidation pathways by computational chemistry and forced degradation. Pharm Res. 2004;21(9):1708鈥?7. 41469.96466.12" target="_blank" title="It opens in new window">CrossRef
    20. Jonsson M, Wayner DDM, Armstrong DA, Yu D, Rauk A. On the thermodynamics of peptide oxidation: anhydrides of glycine and alanine. J Chem Soc Perkin Trans. 1998;2:1967鈥?2. 4f" target="_blank" title="It opens in new window">CrossRef
    21. Leopoldini M, Marino T, Russo N, Toscano M. Antioxidant properties of phenolic compounds: H-Atom versus electron transfer mechanism. J Phys Chem A. 2004;108:4916鈥?2. 47d" target="_blank" title="It opens in new window">CrossRef
    22. Alves CN, Borges RS, Da Silva ABF. Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int J Quantum Chem. 2006;106:2617鈥?3. CrossRef
    23. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B. 1964;136:864鈥?1. 4" target="_blank" title="It opens in new window">CrossRef
    24. Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the / v-representability problem. Proc Natl Acad Sci U S A. 1979;76:6062鈥?. CrossRef
    25. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756. CrossRef
    26. Delley B. Time dependent density functional theory with DMol3. J Phys Condens Matter. 2010;22:384208. 4/22/38/384208" target="_blank" title="It opens in new window">CrossRef
    27. Accelrys Software, Inc. Accelrys 2013
    28. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92:508. 458452" target="_blank" title="It opens in new window">CrossRef
    29. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980;58:1200鈥?1. CrossRef
    30. Perdew JP, Burke K, Ernzerhof MG. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865. CrossRef
    31. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648鈥?2. 464913" target="_blank" title="It opens in new window">CrossRef
    32. Lewin JL, Cramer CJ. Rapid quantum mechanical models for the computational estimation of C-H bond dissociation energies as a measure of metabolic stability mol. Pharm. 2004;1:128鈥?5.
    33. Blanksby SJ, Ellison GB. Bond dissociation of organic molecules. Acc Chem Res. 2003;36:255鈥?3. CrossRef
    34. Florey ed, Analytical profiles of drug substances Vol 14, New York Academic Press 1985, 59
    35. Florey ed, Analytical profiles of drug substances Vol 20, New York Academic Press 1991, 405
    36. Baertschi SW. Pharmaceutical stress testing: predicting drug degradation. Taylor and Fran莽is informa. Healthc. 2005;153:100.
    37. Florey ed, Analytical profiles of drug substances Vol 18, New York Academic Press 1989; 245
    38. Albini A, Fasani E. Drugs: photochemistry and photostability. An overview and practical problems. Cambridge: The royal Society of Chemistry; 1998. p. 21. 47550712" target="_blank" title="It opens in new window">CrossRef
    39. Sanofi private communication
    40. Florey ed, Analytical profiles of drug substances Vol 1, New York Academic Press 1972:93
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose Chemical degradation and stability in formulation is a recurrent issue in pharmaceutical development of drugs. The objective of the present study was to develop an in silico risk assessment of active pharmaceutical ingredients (APIs) stability with respect to autoxidation. Methods The chemical degradation by autoxidation of a diverse series of APIs has been investigated with molecular modelling tools. A set of 45 organic compounds was used to test and validate the various computational settings. Aiming to devise a methodology that could reliably perform a risk assessment for potential sensibility to autoxidation, different types of APIs, known for their autoxidation history were inspected. To define the level of approximation needed, various density functional theory (DFT) functionals and settings were employed and their accuracy and speed were compared. Results The Local Density Approximation (LDA) gave the fastest results but with a substantial deviation (systematic over-estimation) to known experimental values. The Perdew-Burke-Ernzerhof (PBE) settings appeared to be a good compromise between speed and accuracy. Conclusions The present methodology can now be confidently deployed in pharmaceutical development for systematic risk assessment of drug stability.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.