A functional variant in miR-143 promoter contributes to prostate cancer risk
详细信息    查看全文
  • 作者:Haiyan Chu ; Dongyan Zhong ; Jialin Tang ; Jie Li ; Yao Xue ; Na Tong…
  • 关键词:miR ; 143 ; Prostate cancer ; KLK2 ; Genetic susceptibility ; Molecular epidemiology
  • 刊名:Archives of Toxicology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:90
  • 期:2
  • 页码:403-414
  • 全文大小:862 KB
  • 参考文献:Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.​1038/​nature02871natur​e02871 CrossRef PubMed
    Ambs S, Prueitt RL, Yi M et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68(15):6162–6170. doi:10.​1158/​0008-5472.​CAN-08-0144 PubMedCentral CrossRef PubMed
    Andriole GL, Crawford ED, Grubb RL 3rd et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360(13):1310–1319. doi:10.​1056/​NEJMoa0810696 PubMedCentral CrossRef PubMed
    Baade PD, Youlden DR, Krnjacki LJ (2009) International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res 53(2):171–184. doi:10.​1002/​mnfr.​200700511 CrossRef PubMed
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRef PubMed
    Becker C, Piironen T, Pettersson K et al (2000) Discrimination of men with prostate cancer from those with benign disease by measurements of human glandular kallikrein 2 (HK2) in serum. The Journal of urology 163(1):311–316CrossRef PubMed
    Chang A, Yousef GM, Scorilas A et al (2002) Human kallikrein gene 13 (KLK13) expression by quantitative RT-PCR: an independent indicator of favourable prognosis in breast cancer. Br J Cancer 86(9):1457–1464PubMedCentral CrossRef PubMed
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. doi:10.​1093/​nar/​gni178 PubMedCentral CrossRef PubMed
    Chen X, Guo X, Zhang H et al (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392. doi:10.​1038/​onc.​2008.​474 CrossRef PubMed
    Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467(7314):415–419. doi:10.​1038/​nature09351 CrossRef PubMed
    Chow TF, Crow M, Earle T, El-Said H, Diamandis EP, Yousef GM (2008) Kallikreins as microRNA targets: an in silico and experimental-based analysis. Biol Chem 389(6):731–738. doi:10.​1515/​BC.​2008.​07110.​1515/​BC.​2008.​071 CrossRef PubMed
    Clape C, Fritz V, Henriquet C et al (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS ONE 4(10):e7542. doi:10.​1371/​journal.​pone.​0007542 PubMedCentral CrossRef PubMed
    Clements JA, Willemsen NM, Myers SA, Dong Y (2004) The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit Rev Clin Lab Sci 41(3):265–312. doi:10.​1080/​1040836049047193​1 CrossRef PubMed
    Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714. doi:10.​1038/​nrg2634 PubMedCentral CrossRef PubMed
    Deperthes D, Frenette G, Brillard-Bourdet M et al (1996) Potential involvement of kallikrein hK2 in the hydrolysis of the human seminal vesicle proteins after ejaculation. J Androl 17(6):659–665PubMed
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.​3322/​caac.​20107 CrossRef PubMed
    Kosik KS (2010) MicroRNAs and cellular phenotypy. Cell 143(1):21–26. doi:10.​1016/​j.​cell.​2010.​09.​008 CrossRef PubMed
    Kumar A, Mikolajczyk SD, Goel AS, Millar LS, Saedi MS (1997) Expression of pro form of prostate-specific antigen by mammalian cells and its conversion to mature, active form by human kallikrein 2. Cancer Res 57(15):3111–3114PubMed
    Lin T, Dong W, Huang J et al (2009) MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol 181(3):1372–1380. doi:10.​1016/​j.​juro.​2008.​10.​149 CrossRef PubMed
    Lose F, Batra J, O’Mara T et al (2013) Common variation in Kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness. Urologic oncology 31(5):635–643CrossRef PubMed
    Lovgren J, Airas K, Lilja H (1999) Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by Zn2+ and extracellular protease inhibitors. Eur J Biochem 262(3):781–789CrossRef PubMed
    Luo X, Yang W, Ye DQ et al (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7(6):e1002128. doi:10.​1371/​journal.​pgen.​1002128PGENETICS​-D-10-00139 PubMedCentral CrossRef PubMed
    Mikolajczyk SD, Millar LS, Kumar A, Saedi MS (1999) Prostatic human kallikrein 2 inactivates and complexes with plasminogen activator inhibitor-1. Int J Cancer 81(3):438–442. doi:10.​1002/​(SICI)1097-0215(19990505)81:​3<438:​AID-IJC18>3.​0.​CO;2-U CrossRef PubMed
    Mize GJ, Wang W, Takayama TK (2008) Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2. Mol Cancer Res 6(6):1043–1051. doi:10.​1158/​1541-7786.​MCR-08-0096 CrossRef PubMed
    Noguchi S, Yasui Y, Iwasaki J et al (2013) Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 328(2):353–361. doi:10.​1016/​j.​canlet.​2012.​10.​017 CrossRef PubMed
    Obiezu CV, Diamandis EP (2005) Human tissue kallikrein gene family: applications in cancer. Cancer Lett 224(1):1–22. doi:10.​1016/​j.​canlet.​2004.​09.​024 CrossRef PubMed
    Recker F, Kwiatkowski MK, Piironen T et al (2000) Human glandular kallikrein as a tool to improve discrimination of poorly differentiated and non-organ-confined prostate cancer compared with prostate-specific antigen. Urology 55(4):481–485CrossRef PubMed
    Rehault S, Monget P, Mazerbourg S et al (2001) Insulin-like growth factor binding proteins (IGFBPs) as potential physiological substrates for human kallikreins hK2 and hK3. Eur J Biochem 268(10):2960–2968CrossRef PubMed
    Riegman PH, Vlietstra RJ, van der Korput HA, Romijn JC, Trapman J (1991) Identification and androgen-regulated expression of two major human glandular kallikrein-1 (hGK-1) mRNA species. Mol Cell Endocrinol 76(1–3):181–190CrossRef PubMed
    Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402. doi:10.​1038/​nrc2867 PubMedCentral CrossRef PubMed
    Samaan S, Lichner Z, Ding Q et al (2014) Kallikreins are involved in an miRNA network that contributes to prostate cancer progression. Biol Chem 395(9):991–1001CrossRef PubMed
    Schaefer A, Jung M, Mollenkopf HJ et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126(5):1166–1176. doi:10.​1002/​ijc.​24827 PubMed
    Schroder FH, Hugosson J, Roobol MJ et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360(13):1320–1328. doi:10.​1056/​NEJMoa0810084 CrossRef PubMed
    Sevignani C, Calin GA, Nnadi SC et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104(19):8017–8022. doi:10.​1073/​pnas.​0702177104 PubMedCentral CrossRef PubMed
    Shahi P, Loukianiouk S, Bohne-Lang A et al (2006) Argonaute–a database for gene regulation by mammalian microRNAs. Nucleic acids res 34(database issue):D115-8. doi:10.​1093/​nar/​gkj093
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29. doi:10.​3322/​caac.​20138 CrossRef PubMed
    Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479. doi:10.​1146/​annurev.​biochem.​72.​121801.​161520121801.​161520 CrossRef PubMed
    Sun Z, Pan J, Balk SP (1997) Androgen receptor-associated protein complex binds upstream of the androgen-responsive elements in the promoters of human prostate-specific antigen and kallikrein 2 genes. Nucleic Acids Res 25(16):3318–3325PubMedCentral CrossRef PubMed
    Szczyrba J, Loprich E, Wach S et al (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8(4):529–538. doi:10.​1158/​1541-7786.​MCR-09-0443 CrossRef PubMed
    Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y (2009) Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 77(1):12–21. doi:10.​1159/​000218166 CrossRef PubMed
    Tong AW, Fulgham P, Jay C et al (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16(3):206–216. doi:10.​1038/​cgt.​2008.​77 PubMed
    Ugras S, Brill E, Jacobsen A et al (2011) Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71(17):5659–5669. doi:10.​1158/​0008-5472.​CAN-11-0890 PubMedCentral CrossRef PubMed
    Vrba L, Garbe JC, Stampfer MR, Futscher BW (2011) Epigenetic regulation of normal human mammary cell type-specific miRNAs. Genome Res 21(12):2026–2037. doi:10.​1101/​gr.​123935.​111 PubMedCentral CrossRef PubMed
    Wach S, Nolte E, Szczyrba J et al (2012) MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 130(3):611–621. doi:10.​1002/​ijc.​26064 CrossRef PubMed
    Weis L, Reinberg D (1992) Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J 6(14):3300–3309PubMed
    White NM, Bui A, Mejia-Guerrero S et al (2010a) Dysregulation of kallikrein-related peptidases in renal cell carcinoma: potential targets of miRNAs. Biol Chem 391(4):411–423. doi:10.​1515/​BC.​2010.​041 CrossRef PubMed
    White NM, Chow TF, Mejia-Guerrero S et al (2010b) Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 102(8):1244–1253. doi:10.​1038/​sj.​bjc.​6605634 PubMedCentral CrossRef PubMed
    White NM, Youssef YM, Fendler A, Stephan C, Jung K, Yousef GM (2012) The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer. Biol Chem 393(5):379–389. doi:10.​1515/​hsz-2011-0246/​j/​bchm.​2012.​393.​issue-5/​hsz-2011-0246/​hsz-2011-0246.​xml CrossRef PubMed
    Xu B, Niu X, Zhang X et al (2011a) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350(1–2):207–213. doi:10.​1007/​s11010-010-0700-6 CrossRef PubMed
    Xu Y, Liu L, Liu J et al (2011b) A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer 128(2):412–417. doi:10.​1002/​ijc.​25342 CrossRef PubMed
    Xue Y, Wang M, Kang M et al (2013) Association between lncrna PCGEM1 polymorphisms and prostate cancer risk. Prostate cancer and prostatic diseases 16(2):139–144. doi:10.​1038/​pcan.​2013.​6
    Young CY, Montgomery BT, Andrews PE, Qui SD, Bilhartz DL, Tindall DJ (1991) Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Res 51(14):3748–3752PubMed
    Young CY, Andrews PE, Montgomery BT, Tindall DJ (1992) Tissue-specific and hormonal regulation of human prostate-specific glandular kallikrein. Biochemistry 31(3):818–824CrossRef PubMed
    Zhang Y, Wang Z, Chen M et al (2012) MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer 11:23. doi:10.​1186/​1476-4598-11-23 PubMedCentral CrossRef PubMed
    Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3(3):e37. doi:10.​1371/​journal.​pcbi.​0030037 PubMedCentral CrossRef PubMed
  • 作者单位:Haiyan Chu (1) (2) (3)
    Dongyan Zhong (3) (4)
    Jialin Tang (3) (5)
    Jie Li (6)
    Yao Xue (2) (3)
    Na Tong (2) (3)
    Chao Qin (6)
    Changjun Yin (6)
    Zhengdong Zhang (1) (2) (3)
    Meilin Wang (1) (2) (3)

    1. State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 818 East Tianyuan Road, Nanjing, 211166, China
    2. Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
    3. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
    4. Orthopaedic Institute, Soochow University, Suzhou, China
    5. Department of Public Health, Jiangxi Center for Disease Control and Prevention, 555 Beijing East Road, Nanchang, 330029, Jiangxi, China
    6. Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
  • 刊物主题:Pharmacology/Toxicology; Occupational Medicine/Industrial Medicine; Environmental Health; Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0738
文摘
MicroRNAs are important regulators in numerous cellular processes, including cell differentiation, proliferation, and apoptosis. Recently, miR-143 was identified as a tumor suppressor in prostate cancer (PCa). To explore the mechanism of dysregulation and anti-tumor function of miR-143 in PCa, we first found a single-nucleotide polymorphism rs4705342T>C in the promoter region of miR-143 through bioinformatics tools and then performed a case–control study including 608 PCa patients and 709 controls. Results suggested that subjects with TC/CC genotypes had significantly decreased risk of PCa compared with those with TT genotype (adjusted OR 0.68, 95 % CI 0.55–0.85). Further functional assays showed that the risk-associated T allele increased the protein-binding affinity and reduced the activity of the promoter compared with C allele. In addition, restoration of miR-143 by mimics in PCa cells significantly inhibited cell proliferation and migration and down-regulated the expression level of kallikrein-related peptidase 2 (KLK2) mRNA and protein. The miR-143-KLK2 axis was also confirmed by luciferase reporter assay in vitro. In conclusion, our findings demonstrate that there is the significant association between the functional promoter variant rs4705342T>C in miR-143 and PCa risk and newly describe the miR-143-KLK2 interaction which provided another potential mechanism for miR-143 anti-tumor function. Keywords miR-143 Prostate cancer KLK2 Genetic susceptibility Molecular epidemiology
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.