Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum
详细信息    查看全文
  • 作者:Rosa Elvira Sánchez-Fernández ; Daniel Diaz ; Georgina Duarte…
  • 关键词:Endophytic fungus ; Nodulisporium sp. ; Hypoxylon anthochroum ; Antifungal ; VOCs ; Interspecific interaction
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:71
  • 期:2
  • 页码:347-364
  • 全文大小:4,819 KB
  • 参考文献:1.Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83. doi:10.​1016/​j.​fbr.​2012.​07.​001 CrossRef
    2.Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–49. doi:10.​1016/​j.​micres.​2009.​11.​009 CrossRef PubMed
    3.Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–73. doi:10.​3109/​07388551.​2011.​651429 CrossRef PubMed
    4.Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. doi:10.​1007/​s10886-012-0135-5 CrossRef PubMed
    5.Spraker JE, Jewell K, Roze LV et al (2014) A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia solanacearum and Aspergillus flavus. J Chem Ecol 40:502–513. doi:10.​1007/​s10886-014-0432-2 CrossRef PubMed
    6.Gams W, Diederich P, Põldmaa K (2004) Fungicolous Fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, MA, pp 343–392CrossRef
    7.Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. African J Microbiol Res 4:1346–1351
    8.Stinson M, Ezra D, Hess WM et al (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922. doi:10.​1016/​S0168-9452(03)00299-1 CrossRef
    9.Strobel G (2011) Muscodor species—endophytes with biological promise. Phytochem Rev 10:165–172. doi:10.​1007/​s11101-010-9163-3 CrossRef
    10.Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194. doi:10.​1111/​j.​1574-6941.​2000.​tb00683.​x CrossRef PubMed
    11.Rotheray TD, Chancellor M, Jones TH, Boddy L (2011) Grazing by collembola affects the outcome of interspecific mycelial interactions of cord-forming basidiomycetes. Fungal Ecol 4:42–55. doi:10.​1016/​j.​funeco.​2010.​09.​001 CrossRef
    12.Evans J, Eyre C, Rogers HJ et al (2008) Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecol 1:57–68. doi:10.​1016/​j.​funeco.​2008.​06.​001 CrossRef
    13.Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854. doi:10.​1111/​j.​1462-2920.​2008.​01805.​x CrossRef PubMed
    14.Hynes J, Müller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57. doi:10.​1007/​s10886-006-9209-6 CrossRef PubMed
    15.Park M-S, Ahn J-Y, Choi G-J et al (2010) Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. Plant Pathol J 26:253–259. doi:10.​5423/​PPJ.​2010.​26.​3.​253 CrossRef
    16.Tomsheck AR, Strobel G, Booth E et al (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–14. doi:10.​1007/​s00248-010-9759-6 CrossRef PubMed
    17.Mends MT, Yu E, Strobel GA et al (2012) An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Pet Environ Biotechnol 03:117. doi:10.​4172/​2157-7463.​1000117
    18.Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23:29–35CrossRef PubMed
    19.Suwannarach N, Kumla J, Bussaban B et al (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70. doi:10.​1016/​j.​cropro.​2012.​11.​015 CrossRef
    20.Nigg J, Strobel G, Knighton WB et al (2014) Functionalized para-substituted benzenes as 1,8-cineole production modulators in an endophytic Nodulisporium species. Microbiology 160:1772–1782. doi:10.​1099/​mic.​0.​079756-0 CrossRef PubMed
    21.Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376. doi:10.​2307/​3760568 CrossRef
    22.Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England
    23.Ju Y-M, Rogers JD (1996) A revision of the genus Hypoxylon. APS, St. Paul, MI
    24.Kornerup A, Wanscher JH (1967) Methuen handbook of colour, 3dth edn. Methuen E, London
    25.Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.​1111/​J.​1365-294x.​1993.​Tb00005.​X CrossRef PubMed
    26.Larena I, Salazar O, González V et al (1999) Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 75:187–194. doi:10.​1016/​S0168-1656(99)00154-6 CrossRef PubMed
    27.Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5:2272–2278. doi:10.​1128/​MCB.​5.​9.​2272 PubMedCentral CrossRef PubMed
    28.Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. doi:10.​1186/​1471-2180-5-28 PubMedCentral PubMed
    29.Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–10. doi:10.​1016/​S0022-2836(05)80360-2 CrossRef PubMed
    30.Macías-Rubalcava ML, Hernández-Bautista BE, Jiménez-Estrada M et al (2008) Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry 69:1185–1196. doi:10.​1016/​j.​phytochem.​2007.​12.​006 CrossRef PubMed
    31.Macías-Rubalcava ML, Hernández-bautista BE, Oropeza F et al (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131. doi:10.​1007/​s10886-010-9848-5 CrossRef PubMed
    32.Meléndez-González C, Murià-González MJ, Anaya AL et al (2015) Acremoxanthone E, a novel member of heterodimeric polyketides with a bicyclo[3.2.2]nonene ring, produced by Acremonium camptosporum W. GAMS (Clavicipitaceae) endophytic fungus. Chem Biodivers 12:133–147CrossRef PubMed
    33.Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy, 4th edition, 4th ed. Biochem Syst Ecol. doi:10.​1016/​0305-1978(96)83708-2
    34.Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. In: http://​bioinfogp.​cnb.​csic.​es/​tools/​venny/​index.​html
    35.Costa PS, Santos NC, Cunha P, et al. (2013) The use of Multiple Correspondence Analysis to explore associations between categories of qualitative variables in healthy ageing. J Aging Res 1–12. doi: 10.1155/2013/302163
    36.Semmar N (2013) Two computational simplex approaches to graphical highlighting metabolic phenotypes and their functional origins: Correspondence Analysis and Weighted Metabolic Profiles Analysis. Metabolomics coming age with its Technol. Divers., 1st ed. Elsevier, pp 441–492
    37.Kuhnert E, Fournier J, Peršoh D et al (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers 64:181–203. doi:10.​1007/​s13225-013-0264-3 CrossRef
    38.Mulyaningsih S, Sporer F, Zimmermann S et al (2010) Phytomedicine synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Eur J Integr Med 17:1061–1066. doi:10.​1016/​j.​phymed.​2010.​06.​018
    39.Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950. doi:10.​1099/​00221287-147-11-2943 CrossRef PubMed
    40.Bertrand S, Bohni N, Schnee S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204. doi:10.​1016/​j.​biotechadv.​2014.​03.​001 CrossRef PubMed
    41.Müller MEH, Steier I, Köppen R et al (2012) Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. J Appl Microbiol 113:874–887. doi:10.​1111/​j.​1365-2672.​2012.​05388.​x CrossRef PubMed
    42.Minerdi D, Bossi S, Maffei ME et al (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351. doi:10.​1111/​j.​1574-6941.​2011.​01051.​x CrossRef PubMed
    43.Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J (2011) Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem Toxicol 49:2035–45. doi:10.​1016/​j.​fct.​2011.​05.​015 CrossRef PubMed
    44.Vilela GR, de Almeida GS, D’Arce MABR et al (2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stored Prod Res 45:108–111. doi:10.​1016/​j.​jspr.​2008.​10.​006 CrossRef
    45.Stojković D, Soković M, Glamočlija J et al (2011) Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem 128:1017–1022. doi:10.​1016/​j.​foodchem.​2011.​04.​007 CrossRef
    46.Yamagiwa Y, Inagaki Y, Ichinose Y et al (2011) Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341. doi:10.​1007/​s10327-011-0340-z CrossRef
    47.Li Q, Ning P, Zheng L et al (2010) Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol Technol 58:157–165. doi:10.​1016/​j.​postharvbio.​2010.​06.​003 CrossRef
    48.Strobel G, Singh SK, Riyaz-Ul-Hassan S et al (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94. doi:10.​1111/​j.​1574-6968.​2011.​02297.​x CrossRef PubMed
    49.Müller A, Faubert P, Hagen M et al (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33. doi:10.​1016/​j.​fgb.​2013.​02.​005 CrossRef PubMed
    50.Singh P, Shukla R, Prakash B et al (2010) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol 48:1734–1740. doi:10.​1016/​j.​fct.​2010.​04.​001 CrossRef PubMed
  • 作者单位:Rosa Elvira Sánchez-Fernández (1)
    Daniel Diaz (2)
    Georgina Duarte (3)
    Patricia Lappe-Oliveras (4)
    Sergio Sánchez (5)
    Martha Lydia Macías-Rubalcava (1)

    1. Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, Coyoacán, D.F., 04510, Mexico
    2. Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, UNAM. Ciudad Universitaria, Coyoacán, D.F., 04510, Mexico
    3. Facultad de Química, Unidad de Servicios de Apoyo a la Investigación, UNAM. Ciudad Universitaria, Coyoacán, D.F., 04510, Mexico
    4. Instituto de Biología, Departamento de Botánica, UNAM. Ciudad Universitaria, Coyoacán, D.F., 04510, Mexico
    5. Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM. Ciudad Universitaria, Coyoacán, D.F., 04510, Mexico
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
This study demonstrates volatile organic compounds (VOCs) production as one of the defense mechanisms of the antagonistic endophyte Nodulisporium sp. GS4d2II1a, and the volatile changes in two times of the fungal growth; and, as result of its intra and interspecific interactions with the plant pathogen Pythium aphanidermatum. The antifungal activity of the volatile and diffusible metabolites was evaluated by means of three types of antagonism bioassays and by organic extract agar dilution. VOCs were obtained by gas chromatography coupled to mass spectrometry from 3- and 5-day Nodulisporium sp. cultures, as well as from its interspecific in vitro antagonistic interaction with the oomycete P. aphanidermatum, and its intraspecific Nodulisporium sp.–Nodulisporium sp. interaction. The GS4d2II1a strain completely inhibited the growth of two fungi and seven oomycetes by replacing their mycelia in simple antagonism bioassays and by producing in vitro volatile and diffusible metabolites that acted synergistically in multiple antagonism bioassays. Additionally, VOCs inhibited the growth of three oomycetes and one fungus in antagonism bioassays using divided plates. A total of 70 VOCs were detected, mainly including mono and sesquiterpenes, especially eucalyptol and limonene. Multiple correspondence analysis revealed four different volatile profiles, showing that volatiles changed with the fungus age and its intra and interspecific interactions. The metabolites produced by Nodulisporium sp. GS4d2II1a could be useful for biological control of fungal and oomycetes plant pathogens of economically important crops. Keywords Endophytic fungus Nodulisporium sp. Hypoxylon anthochroum Antifungal VOCs Interspecific interaction
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.