Ceiling vision-based active SLAM framework for dynamic and wide-open environments
详细信息    查看全文
  • 作者:Su-Yong An ; Lae-Kyoung Lee ; Se-Young Oh
  • 关键词:Ceiling vision ; Mobile robot ; SLAM ; Dynamic environment ; Wide ; open area
  • 刊名:Autonomous Robots
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:40
  • 期:2
  • 页码:291-324
  • 全文大小:14,679 KB
  • 参考文献:Albrecht, S. (2009). An analysis of VISUAL MONO-SLAM. Master Thesis.
    An, S.-Y., Kang, J.-G., Lee, L.-K., & Oh, S.-Y. (2012). Line segment-based indoor mapping with salient line feature extraction. Advanced Robotics, 26(5–6), 437–460.CrossRef
    An, S.-Y., Lee, L.-K., & Oh, S.-Y. (2013). Ceiling vision-based topological mapping and exploration in wide-open area. In RO-MAN, 2013 IEEE, 2013 (pp. 1–6)
    Ayoung, K., & Eustice, R. M. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733. doi:10.​1109/​TRO.​2012.​2235699 .CrossRef
    Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006). Consistency of the EKF-SLAM algorithm. In 2006 IEEE/RSJ International Conference on intelligent robots and systems (pp. 3562–3568).
    Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In Computer vision–ECCV 2006 (pp. 404–417). New York: Springer.
    Breu, H., Gil, J., Kirkpatrick, D., & Werman, M. (1995). Linear time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5), 529–533.CrossRef
    Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kummerle, R., Dornhege, C., et al. (2009). A comparison of SLAM algorithms based on a graph of relations. In IEEE/RSJ International Conference on intelligent robots and systems, 2009. IROS 2009 (pp. 2089–2095). St. Louis, MO : IEEE.
    Callmer, J., Granström, K., Nieto, J., & Ramos, F. (2008). Tree of words for visual loop closure detection in urban SLAM. In Proceedings of the 2008 Australasian conference on robotics and automation (pp. 8).
    Choi, J., Ahn, S., Choi, M., & Chung, W. K. (2006). Metric SLAM in home environment with visual objects and sonar features. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 4048-4053). San Diego: IEEE.
    Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.CrossRef
    Delaunay, B. (1934). Sur la sphère vide. Bulletin of the Academy of Sciences of the USSR, 7, 793–800.
    Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.CrossRef MathSciNet MATH
    Diosi, A., & Kleeman, L. (2005). Laser scan matching in polar coordinates with application to SLAM. In 2005 IEEE/RSJ international conference on intelligent robots and systems. (IROS 2005) (pp. 3317–3322). Edmonton, AB: IEEE.
    Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.CrossRef
    Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellised particle filtering for dynamic Bayesian networks. In Proceedings of the sixteenth conference on uncertainty in artificial intelligence (pp. 176–183). San Francisco: Morgan Kaufmann Publishers Inc.
    Estrada, C., Neira, J., & Tardós, J. D. (2005). Hierarchical SLAM: Real-time accurate mapping of large environments. IEEE Transactions on Robotics, 21(4), 588–596.CrossRef
    Gaspar, J., Winters, N., & Santos-Victor, J. (2000). Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 16(6), 890–898.CrossRef
    Grisettiyz, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 2432–2437). Barcelona: IEEE.
    Guivant, J. E., & Nebot, E. M. (2001). Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 17(3), 242–257.CrossRef
    Hahnel, D., Triebel, R., Burgard, W., & Thrun, S. (2003). Map building with mobile robots in dynamic environments. In IEEE international conference on robotics and automation, 2003. Proceedings. ICRA’03 (Vol. 2, pp. 1557–1563)
    Holz, D., Basilico, N., Amigoni, F., & Behnke, S. (2010). Evaluating the efficiency of frontier-based exploration strategies. In Robotics (ISR), 2010 41st international symposium on and 2010 6th German conference on robotics (ROBOTIK), 7–9 June 2010 2010 (pp. 1–8)
    Hwang, S.-Y., & Song, J.-B. (2008). Stable monocular SLAM with indistinguishable features on estimated ceiling plane using upward camera. In International conference on control, automation and systems, 2008. ICCAS 2008 (pp. 704–709).
    Hwang, S.-Y., & Song, J.-B. (2011). Monocular vision-based SLAM in indoor environment using corner, lamp, and door features from upward-looking camera. IEEE Transactions on Industrial Electronics, 58(10), 4804–4812.CrossRef
    Jeong, W., & Lee, K. M. (2005). CV-SLAM: A new ceiling vision-based SLAM technique. In 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005.(IROS 2005) (pp. 3195–3200).
    Jeong, W. Y., & Lee, K. M. (2006). Visual SLAM with line and corner features. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 2570–2575).
    Julier, S. J., & Uhlmann, J. K. (2007). Using covariance intersection for SLAM. Robotics and Autonomous Systems, 55(1), 3–20.CrossRef
    Kang, J.-G., An, S.-Y., & Oh, S.-Y. (2007). Navigation strategy for the service robot in the elevator environment. In International conference on control, automation and systems, 2007. ICCAS’07 (pp. 1092–1097).
    Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P., & Munich, M. E. (2005). The vSLAM algorithm for robust localization and mapping. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 24–29).
    Kim, J., & Sukkarieh, S. (2007). Real-time implementation of airborne inertial-SLAM. Robotics and Autonomous Systems, 55(1), 62–71.CrossRef
    Kröse, B. J., Vlassis, N., Bunschoten, R., & Motomura, Y. (2001). A probabilistic model for appearance-based robot localization. Image and Vision Computing, 19(6), 381–391.CrossRef
    Kundu, A., Krishna, K. M., & Jawahar, C. (2011). Realtime multibody visual slam with a smoothly moving monocular camera. In 2011 IEEE international conference on computer vision (ICCV) (pp. 2080–2087).
    Launay, F., Ohya, A., & Yuta, S. (2002). A corridors lights based navigation system including path definition using a topologically corrected map for indoor mobile robots. In IEEE international conference on robotics and automation, 2002. Proceedings. ICRA’02 (Vol. 4, pp. 3918–3923).
    Lee, J.-S., & Chung, W. K. (2010). Robust mobile robot localization in highly non-static environments. Autonomous Robots, 29(1), 1–16.CrossRef
    Leung, C., Huang, S., & Dissanayake, G. (2008). Active SLAM in structured environments. In IEEE international conference on robotics and automation, 2008. ICRA 08 (pp. 1898–1903).
    Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRef
    Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., & Doucet, A. (2009). A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103.CrossRef
    Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. In AAAI/IAAI, 2002 (pp. 593–598).
    Nieto, J., Bailey, T., & Nebot, E. (2006). Scan-slam: Combining ekf-slam and scan correlation. In Field and service robotics, 2006 (pp. 167–178). New York: Springer.
    Nieto, J., Bailey, T., & Nebot, E. (2007). Recursive scan-matching SLAM. Robotics and Autonomous Systems, 55(1), 39–49.CrossRef
    Paz, L. M., Tardós, J. D., & Neira, J. (2008). Divide and conquer: EKF SLAM in O(n). IEEE Transactions on Robotics, 24(5), 1107–1120.CrossRef
    Roda, J. P., Sáez, J. M., & Escolano, F. (2007). Ceiling mosaics through information-based SLAM. In IEEE/RSJ international conference on intelligent robots and systems, 2007. IROS 07 (pp. 3898–3904).
    Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 105–119.CrossRef
    Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings of third international conference on 3-D digital imaging and modeling, 2001 (pp. 145–152).
    Shafait, F., Keysers, D., & Breuel, T. M. (2008). Efficient implementation of local adaptive thresholding techniques using integral images. DRR, 6815, 681510.
    Sim, R., & Roy, N. Global a-optimal robot exploration in slam. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 661–666).
    Sunderhauf, N., & Protzel, P. Towards a robust back-end for pose graph SLAM. In 2012 IEEE international conference on robotics and automation (ICRA) (pp. 1254–1261).
    Tardós, J. D., Neira, J., Newman, P. M., & Leonard, J. J. (2002). Robust mapping and localization in indoor environments using sonar data. The International Journal of Robotics Research, 21(4), 311–330.CrossRef
    Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., et al. (2000). Probabilistic algorithms and the interactive museum tour-guide robot minerva. The International Journal of Robotics Research, 19(11), 972–999.CrossRef
    Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., et al. (1999). MINERVA: A second-generation museum tour-guide robot. In Proceedings of 1999 IEEE international conference on robotics and automation (Vol. 3).
    Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.MATH
    Thrun, S., & Montemerlo, M. (2006). The graph SLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5–6), 403–429.CrossRef
    Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based place recognition for topological localization. In Proceedings of IEEE international conference on robotics and automation, 2000. ICRA’00 (Vol. 2, pp. 1023–1029).
    Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.CrossRef
    Wang, C.-C., Thorpe, C., Thrun, S., Hebert, M., & Durrant-Whyte, H. (2007). Simultaneous localization, mapping and moving object tracking. The International Journal of Robotics Research, 26(9), 889–916.CrossRef
    Wilson, S. W. (1996). Explore/exploit strategies in autonomy. In From animals to animats 4: Proceedings of the 4th international conference on simulation of adaptive behavior, 1996 (pp. 325–332).
    Wolf, D. F., & Sukhatme, G. S. (2005). Mobile robot simultaneous localization and mapping in dynamic environments. Autonomous Robots, 19(1), 53–65.CrossRef
    Xu, D., Han, L., Tan, M., & Li, Y. F. (2009). Ceiling-based visual positioning for an indoor mobile robot with monocular vision. IEEE Transactions on Industrial Electronics, 56(5), 1617–1628.CrossRef
  • 作者单位:Su-Yong An (1)
    Lae-Kyoung Lee (2)
    Se-Young Oh (2)

    1. Electronics and Telecommunications Research Institute (ETRI), Daegu, 711-883, Korea
    2. Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk, 790-784, Korea
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Automation and Robotics
    Electronic and Computer Engineering
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Mechanical Engineering
    Simulation and Modeling
  • 出版者:Springer Netherlands
  • ISSN:1573-7527
文摘
A typical indoor environment can be divided into three categories; office (or room), hallway, and wide-open space such as lobby and hall. There have been numerous approaches for solving simultaneous localization and mapping (SLAM) problem in office (or room) and hallway. However, direct application of the existing approaches to wide-open space may be failed, because it has some distinguished features compared to other indoor places. To solve this problem, this paper proposes a new ceiling vision-based active SLAM framework, with an emphasis on practical deployment of service robot for commercial use in dynamically changing and wide-open environments by adopting the ceiling vision. First, for defining ceiling feature which can be extracted regardless of complexity of ceiling pattern we introduce a model-free landmark, i.e., visual node descriptor, which consists of edge points and their orientations in image space. Second, a recursive ‘explore and exploit’ is proposed for autonomous mapping. It is recursively performed by spreading out mapped area gradually while the robot is actively localized in the map. It can improve map accuracy due to frequent small loop closing. Third, a dynamic edge link (DEL) is proposed to cope with environmental changes in the map. Owing to DEL, we do not need to filter out corrupted sensor data and to distinguish moving object from static one. Also, a self-repairing map mechanism is introduced to deal with unexpected installation or removal of inner structures. We therefore achieve long-term navigation. Several simulations and real experiments in various places show that the proposed active SLAM framework could build a topologically consistent map, and demonstrated that it can be applied well to real environments such as wide-open space in a city hall and railway station.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.