Uniform stability and weak ergodicity of nonhomogeneous Markov chains defined on ordered Banach spaces with a base
详细信息    查看全文
  • 作者:Farrukh Mukhamedov
  • 关键词:Coefficient of ergodicity ; Strong ergodicity ; Weak ergodicity ; Nonhomogeneous Markov chain ; Norm ordered space
  • 刊名:Positivity
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:135-153
  • 全文大小:514 KB
  • 参考文献:1.Albeverio, S., Høegh-Krohn, R.: Frobenius theory for positive maps of von Neumann algebras. Commun. Math. Phys. 64, 83–94 (1978)CrossRef MATH
    2.Alfsen, E.M.: Compact Convex Sets and Booundary Integrals. Springer-Verlag, Berlin (1971)CrossRef
    3.Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147, 832–852 (2012)CrossRef MathSciNet MATH
    4.Ayupov, Sh, Sarymsakov, T.A.: On homogeneous Markov chains on semifields. Theor. Probab. Appl. 26, 510–520 (1982)CrossRef MATH
    5.Bartoszek, W.: Asymptotic properties of iterates of stochastic operators on (AL) Banach lattices. Anal. Polon. Math. 52, 165–173 (1990)MathSciNet MATH
    6.Bartoszek, W., Kuna, B.: Strong mixing Markov semigroups on \({\cal C}_{1}\) are meager. Colloq. Math. 105, 311–317 (2006)CrossRef MathSciNet MATH
    7.Bartoszek, W., Kuna, B.: On residualities in the set of Markov operators on \({\cal C}_{1}\) . Proc. Am. Math. Soc. 133, 2119–2129 (2005)CrossRef MathSciNet MATH
    8.Bartoszek, W., Pulka, M.: On mixing in the class of quadratic stochastic operators. Nonlin. Anal. Theor. Methods 86, 95–113 (2013)CrossRef MathSciNet MATH
    9.Berdikulov, M.: Markov processes on order-unit spaces. Theory Probab. Appl. 53, 136–144 (2009)CrossRef MathSciNet MATH
    10.Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, I. Springer, New York (1979)CrossRef
    11.Carbone, R., Sasso, E., Umanita, V.: On the asymptotic behavior of generic quantum Markov semigroups Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 17, 1450001 (2014)CrossRef MathSciNet
    12.Carbone, R., Pautrat, Y.: Open quantum random walks: reducibility, period, ergodic properties. Ann. Henri Poincare. doi:10.​1007/​s00023-015-0396-y
    13.Cohen, J.E., Iwasa, Y., Rautu, G., Ruskai, M.B., Seneta, E., Zbaganu, G.: Relative entropy under mappings by stochastic matrices. Linear Algebra Appl. 179, 211–235 (1993)CrossRef MathSciNet MATH
    14.Dobrushin, R. L.: Central limit theorem for nonstationary Markov chains. I, II. Theor. Probab. Appl. 1, 65–80, 329–383 (1956)
    15.Dorea, C.C.Y., Pereira, A.G.C.: A note on a variation of Doeblin’s condition for uniform ergodicity of Markov chains. Acta Math. Hungar. 110, 287–292 (2006)CrossRef MathSciNet MATH
    16.Emel’yanov, EYu., Wolff, M.P.H.: Positive operators on Banach spaces ordered by strongly normal cones. Positivity 7, 3–22 (2003)CrossRef MathSciNet MATH
    17.Fagnola, F., Rebolledo, R.: On the existance of stationary states for quantum dyanamical semigroups. J. Math. Phys. 42, 1296–1308 (2001)CrossRef MathSciNet MATH
    18.Fagnola, F., Rebolledo, R.: Transience and recurrence of quantum Markov semigroups, Probab. Theory Relat. Fields 126, 289–306 (2003)CrossRef MathSciNet MATH
    19.Gaubert, S.: Qu, Z.: Dobrushin’s ergodicity coefficient for Markov operators on cones and beyond, Integ. Eqs. Operator Theor. 81, 127–150 (2015)
    20.Ipsen, I.C.F., Salee, T.M.: Ergodicity coefficients defined by vector norms. SIAM J. Matrix Anal. Appl. 32, 153–200 (2011)CrossRef MathSciNet MATH
    21.Jajte, R.: Strong Linit Theorems in Non-commutative probability. Lecture Notes in Math, vol. 1110. Springer, Berlin-Heidelberg (1984)
    22.Johnson, J., Isaacson, D.: Conditions for strong ergodicity using intensity matrices. J. Appl. Probab. 25, 34–42 (1988)CrossRef MathSciNet MATH
    23.Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin-New York (1985)CrossRef MATH
    24.Łuczak, A.: Qantum dynamical semigroups in strongly finite von Neumann algebras. Acta Math. Hungar. 92, 11–17 (2001)CrossRef MathSciNet MATH
    25.Madsen, R.W., Isaacson, D.L.: Strongly ergodic behavior for non-stationary Markov processes. Ann. Probab. 1, 329–335 (1973)CrossRef MathSciNet MATH
    26.Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Berlin (1994)
    27.Mukhamedov, F.: Dobrushin ergodicity coefficient and ergodicity of noncommutative Markov chains. J. Math. Anal. Appl. 408, 364–373 (2013)CrossRef MathSciNet MATH
    28.Mukhamedov, F.: Weak ergodicity of nonhomogeneous Markov chains on noncommutative \(L^1\) -spaces. Banach J. Math. Anal. 7, 53–73 (2013)CrossRef MathSciNet MATH
    29.Mukhamedov, F.: On \(L_1\) -weak ergodicity of nonhomogeneous discrete Markov processes and its applications. Rev. Mat. Compult. 26, 799–813 (2013)CrossRef MathSciNet
    30.Mukhamedov, F.: On \(L_1\) -weak ergodicity of nonhomogeneous continuous-time Markov processes. Bull. Iran. Math. Soc. 40, 1227–1242 (2014)MathSciNet
    31.Mukhamedov, F., Temir, S., Akin, H.: On stability properties of positive contractions of \(L^1\) -spaces accosiated with finite von Neumann algebras. Colloq. Math. 105, 259–269 (2006)CrossRef MathSciNet MATH
    32.Niculescu, C., Ströh, A., Zsidó, L.: Noncommutative extensions of classical and multiple recurrence theorems. J. Operator Theory 50, 3–52 (2003)MathSciNet MATH
    33.Nummelin, E.: General Irreducible Markov Chains and Non-negative Operators. Cambridge University Press, Cambridge (1984)CrossRef MATH
    34.Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256, 810–864 (2009)CrossRef MathSciNet MATH
    35.Reeb, D., Kastoryano, M.J., Wolf, M.M.: Hilbert’s projective metric in quantum information theory. J. Math. Phys. 52, 082201 (2011)CrossRef MathSciNet
    36.Rhodius, A.: On ergodicity coefficients of infinite stochastic matrices. Zeit. Anal. Anwen. 19, 873–887 (2000)CrossRef MathSciNet MATH
    37.Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely positive trace-preserving maps on \(M_2\) . Linear Algebra Appl. 347, 159–187 (2002)CrossRef MathSciNet MATH
    38.Sarymsakov, T.A., Grabarnik, G.Y.: Regularity of monotonically continuous contractions acting on the von Neumann algebra. Dokl. Akad. Nauk UzSSR 5, 9–11 (1987)MathSciNet
    39.Sarymsakov, T.A., Zimakov, N.P.: Ergodic Properties of Markov Operators in Norm Ordered Spaces With a Base, In Book: Operator Algebras and Functional Spaces. Tashkent, Fan (1985)
    40.Sarymsakov, T.A., Zimakov, N.P.: Ergodic principle for the Markov semi-group in ordered normal spaces with basis. Dokl. Akad. Nauk. SSSR 289, 554–558 (1986)MathSciNet
    41.Seneta, E.: On the historical development of the theory of finite inhomogeneous Markov chains. Proc. Cambridge Philos. Soc. 74, 507–513 (1973)CrossRef MathSciNet MATH
    42.Seneta, E.: Non-negative Matrices and Markov Chains. Springer, Berlin (2006)MATH
    43.Suchanecki, Z.: An \(L^1\) extension of stochastic dynamics for irreversible systems. In: Lecture Notes in Math. vol. 1391, pp. 367–374, Springer, Berlin (1984)
    44.Szarek, T.: The stability of Markov operators on polish spaces. Studia Math. 143, 145–152 (2000)MathSciNet MATH
    45.Szehr, O., Wolf, M.M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54, 032203 (2013)CrossRef MathSciNet
    46.Tan, ChP: On the weak ergodicity of nonhomogeneous Markov chains. Statis. Probab. Lett. 26, 293–295 (1996)CrossRef MATH
    47.Vardy, J.J., Watson, B.A.: Markov processes on Riesz spaces. Positivity 16, 373–391 (2012)CrossRef MathSciNet MATH
    48.Zaharopol, R., Zbaganu, G.: Dobrushin coefficients of ergodicity and asymptotically stable \(L^{1}\) -contractions. J. Theor. Probab. 99(4), 885–902 (1999)CrossRef MathSciNet
    49.Zeifman, A.I., Isaacson, D.L.: On strong ergodicity for nonhomogeneous continuous-time Markov chains. Stochast. Process. Appl. 50, 263–273 (1994)CrossRef MathSciNet MATH
  • 作者单位:Farrukh Mukhamedov (1)

    1. Department of Computational and Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, P.O. Box, 141, 25710, Kuantan, Pahang, Malaysia
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Fourier Analysis
    Operator Theory
    Potential Theory
    Calculus of Variations and Optimal Control
    Econometrics
  • 出版者:Birkh盲user Basel
  • ISSN:1572-9281
文摘
In the present paper, we define an ergodicity coefficient of a positive mapping defined on ordered Banach space with a base , and study its properties. The defined coefficient is a generalization of the well-known the Dobrushin’s ergodicity coefficient. By means of the ergodicity coefficient we provide uniform asymptotical stability conditions for nonhomogeneous discrete Markov chains (NDMC). These results are even new in case of von Neumann algebras. Moreover, we find necessary and sufficient conditions for the weak ergodicity of NDMC. Certain relations between uniform asymptotical stability and weak ergodicity are considered.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.