Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain
详细信息    查看全文
  • 作者:Ramil R Noche (2) (5)
    Po-Nien Lu (1) (2)
    Lauren Goldstein-Kral (3)
    Eric Glasgow (4)
    Jennifer O Liang (1)
  • 刊名:BMC Neuroscience
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:1684KB
  • 参考文献:1. Pando MP, Sassone-Corsi P: Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way. / Bioessays 2002, 24 (5) : 419鈥?26. CrossRef
    2. Stephan FK, Zucker I: Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. / Proc Natl Acad Sci USA 1972, 69 (6) : 1583鈥?586. CrossRef
    3. Ralph MR, Foster RG, Davis FC, Menaker M: Transplanted suprachiasmatic nucleus determines circadian period. / Science 1990, 247 (4945) : 975鈥?78. CrossRef
    4. Piggins HD, Loudon A: Circadian biology: clocks within clocks. / Curr Biol 2005, 15 (12) : R455鈥?57. CrossRef
    5. Korf HW, Schomerus C, Stehle JH: The pineal organ, its hormone melatonin, and the photoneuroendocrine system. / Adv Anat Embryol Cell Biol 1998, 146: 1鈥?00.
    6. Honma K, Honma S: The SCN-independent clocks, methamphetamine and food restriction. / Eur J Neurosci 2009, 30 (9) : 1707鈥?717. CrossRef
    7. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ: Circadian rhythms from multiple oscillators: lessons from diverse organisms. / Nat Rev Genet 2005, 6 (7) : 544鈥?56. CrossRef
    8. Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG: Circadian organization of the mammalian retina. / Proc Natl Acad Sci USA 2006, 103 (25) : 9703鈥?708. CrossRef
    9. Tosini G, Bertolucci C, Foa A: The circadian system of reptiles: a multioscillatory and multiphotoreceptive system. / Physiol Behav 2001, 72 (4) : 461鈥?71. CrossRef
    10. Cahill GM: Clock mechanisms in zebrafish. / Cell Tissue Res 2002, 309 (1) : 27鈥?4. CrossRef
    11. Underwood H, Steele CT, Zivkovic B: Circadian organization and the role of the pineal in birds. / Microsc Res Tech 2001, 53 (1) : 48鈥?2. CrossRef
    12. Rink E, Wullimann MF: Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). / Brain Res 2004, 1011 (2) : 206鈥?20. CrossRef
    13. Yanez J, Busch J, Anadon R, Meissl H: Pineal projections in the zebrafish (Danio rerio): overlap with retinal and cerebellar projections. / Neuroscience 2009, 164 (4) : 1712鈥?720. CrossRef
    14. Wulliman MF, Rupp B, Reichert H: / Neuroanatomy of the Zebrafish Brain: A Topological Atlas. Birkhauser; 1996.
    15. Burrill JD, Easter SS Jr: Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). / J Comp Neurol 1994, 346 (4) : 583鈥?00. CrossRef
    16. Rink E, Guo S: The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. / Neuroscience 2004, 127 (1) : 147鈥?54. CrossRef
    17. Mathieu J, Barth A, Rosa FM, Wilson SW, Peyrieras N: Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. / Development 2002, 129 (13) : 3055鈥?065.
    18. Kaneko M, Hernandez-Borsetti N, Cahill GM: Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. / Proc Natl Acad Sci USA 2006, 103 (39) : 14614鈥?4619. CrossRef
    19. Whitmore D, Foulkes NS, Sassone-Corsi P: Light acts directly on organs and cells in culture to set the vertebrate circadian clock. / Nature 2000, 404 (6773) : 87鈥?1. CrossRef
    20. Whitmore D, Foulkes NS, Strahle U, Sassone-Corsi P: Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. / Nat Neurosci 1998, 1 (8) : 701鈥?07. CrossRef
    21. Cahill GM: Circadian regulation of melatonin production in cultured zebrafish pineal and retina. / Brain Res 1996, 708 (1鈥?) : 177鈥?81. CrossRef
    22. Brandstatter R, Abraham U: Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region. / Chronobiol Int 2003, 20 (4) : 637鈥?55. CrossRef
    23. Abraham U, Albrecht U, Brandstatter R: Hypothalamic circadian organization in birds. II. Clock gene expression. / Chronobiol Int 2003, 20 (4) : 657鈥?69. CrossRef
    24. Rebagliati MR, Toyama R, Haffter P, Dawid IB: cyclops encodes a nodal-related factor involved in midline signaling. / Proc Natl Acad Sci USA 1998, 95 (17) : 9932鈥?937. CrossRef
    25. Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV: Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. / Nature 1998, 395 (6698) : 185鈥?89. CrossRef
    26. Hatta K, Kimmel CB, Ho RK, Walker C: The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. / Nature 1991, 350 (6316) : 339鈥?41. CrossRef
    27. Balment RJ, Lu W, Weybourne E, Warne JM: Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. / Gen Comp Endocrinol 2006, 147 (1) : 9鈥?6. CrossRef
    28. Caldwell HK, Lee HJ, Macbeth AH, Young WS: Vasopressin: behavioral roles of an "original" neuropeptide. / Prog Neurobiol 2008, 84 (1) : 1鈥?4. CrossRef
    29. Rohr KB, Barth KA, Varga ZM, Wilson SW: The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. / Neuron 2001, 29 (2) : 341鈥?51. CrossRef
    30. Puelles L: A segmental morphological paradigm for understanding vertebrate forebrains. / Brain Behav Evol 1995, 46 (4鈥?) : 319鈥?37. CrossRef
    31. Eaton JL, Holmqvist B, Glasgow E: Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. / Dev Dyn 2008, 237 (4) : 995鈥?005. CrossRef
    32. Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB, Klein DC: Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. / Dev Dyn 2002, 225 (3) : 241鈥?49. CrossRef
    33. Triqueneaux G, Thenot S, Kakizawa T, Antoch MP, Safi R, Takahashi JS, Delaunay F, Laudet V: The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker. / J Mol Endocrinol 2004, 33 (3) : 585鈥?08. CrossRef
    34. Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R, Gothilf Y: Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. / Mol Endocrinol 2004, 18 (5) : 1210鈥?221. CrossRef
    35. Gamse JT, Shen YC, Thisse C, Thisse B, Raymond PA, Halpern ME, Liang JO: Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. / Nat Genet 2002, 30 (1) : 117鈥?21. CrossRef
    36. Appelbaum L, Anzulovich A, Baler R, Gothilf Y: Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. / J Biol Chem 2005, 280 (12) : 11544鈥?1551. CrossRef
    37. Stenkamp DL, Cunningham LL, Raymond PA, Gonzalez-Fernandez F: Novel expression pattern of interphotoreceptor retinoid-binding protein (IRBP) in the adult and developing zebrafish retina and RPE. / Mol Vis 1998, 4: 26.
    38. Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y: Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. / J Neuroendocrinol 2005, 17 (5) : 314鈥?20. CrossRef
    39. Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MA, Klein DC: Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. / Endocrinology 1999, 140 (10) : 4895鈥?903. CrossRef
    40. Mano H, Kojima D, Fukada Y: Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. / Brain Res Mol Brain Res 1999, 73 (1鈥?) : 110鈥?18. CrossRef
    41. Asaoka Y, Mano H, Kojima D, Fukada Y: Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. / Proc Natl Acad Sci USA 2002, 99 (24) : 15456鈥?5461. CrossRef
    42. Falcon J, Gothilf Y, Coon SL, Boeuf G, Klein DC: Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina. / J Neuroendocrinol 2003, 15 (4) : 378鈥?82. CrossRef
    43. Vuilleumier R, Besseau L, Boeuf G, Piparelli A, Gothilf Y, Gehring WG, Klein DC, Falcon J: Starting the zebrafish pineal circadian clock with a single photic transition. / Endocrinology 2006, 147 (5) : 2273鈥?279. CrossRef
    44. Pierce LX, Noche RR, Ponomareva O, Chang C, Liang JO: Novel functions for Period 3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. / Brain Res 2008, 1223: 11鈥?4. CrossRef
    45. Klein DC: Evolution of the vertebrate pineal gland: the AANAT hypothesis. / Chronobiol Int 2006, 23 (1鈥?) : 5鈥?0. CrossRef
    46. Carr AJ, Whitmore D: Imaging of single light-responsive clock cells reveals fluctuating free-running periods. / Nat Cell Biol 2005, 7 (3) : 319鈥?21. CrossRef
    47. Kazimi N, Cahill GM: Development of a circadian melatonin rhythm in embryonic zebrafish. / Brain Res Dev Brain Res 1999, 117 (1) : 47鈥?2. CrossRef
    48. Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS: Temperature regulates transcription in the zebrafish circadian clock. / PLoS Biol 2005, 3 (11) : e351. CrossRef
    49. Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, / et al.: Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. / Genes Cells 2000, 5 (9) : 725鈥?38. CrossRef
    50. Liu Q, Frey RA, Babb-Clendenon SG, Liu B, Francl J, Wilson AL, Marrs JA, Stenkamp DL: Differential expression of photoreceptor-specific genes in the retina of a zebrafish cadherin2 mutant glass onion and zebrafish cadherin4 morphants. / Exp Eye Res 2007, 84 (1) : 163鈥?75. CrossRef
    51. Bertolucci C, Sovrano VA, Magnone MC, Foa A: Role of suprachiasmatic nuclei in circadian and light-entrained behavioral rhythms of lizards. / Am J Physiol Regul Integr Comp Physiol 2000, 279 (6) : R2121鈥?131.
    52. Foa A, Brandstatter R, Bertolucci C: The circadian system of ruin lizards: a seasonally changing neuroendocrine loop? / Chronobiol Int 2006, 23 (1鈥?) : 317鈥?27. CrossRef
    53. Kramer BM, Song JY, Westphal NJ, Jenks BG, Roubos EW: Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis. / Comp Biochem Physiol B Biochem Mol Biol 2002, 132 (1) : 269鈥?74. CrossRef
    54. Ziv L, Gothilf Y: Circadian time-keeping during early stages of development. / Proc Natl Acad Sci USA 2006, 103 (11) : 4146鈥?151. CrossRef
    55. Kljavin IJ: Early development of photoreceptors in the ventral retina of the zebrafish embryo. / J Comp Neurol 1987, 260 (3) : 461鈥?71. CrossRef
    56. Kennedy BN, Stearns GW, Smyth VA, Ramamurthy V, van Eeden F, Ankoudinova I, Raible D, Hurley JB, Brockerhoff SE: Zebrafish rx3 and mab21l2 are required during eye morphogenesis. / Dev Biol 2004, 270 (2) : 336鈥?49. CrossRef
    57. Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D: Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. / Cell 2007, 129 (7) : 1389鈥?400. CrossRef
    58. Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS: Glucocorticoids play a key role in circadian cell cycle rhythms. / PLoS Biol 2007, 5 (4) : e78. CrossRef
    59. Cashmore AR: Cryptochromes: enabling plants and animals to determine circadian time. / Cell 2003, 114 (5) : 537鈥?43. CrossRef
    60. Ishikawa T, Hirayama J, Kobayashi Y, Todo T: Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA. / Genes Cells 2002, 7 (10) : 1073鈥?086. CrossRef
    61. Philp AR, Bellingham J, Garcia-Fernandez J, Foster RG: A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. / FEBS Lett 2000, 468 (2鈥?) : 181鈥?88. CrossRef
    62. Takanaka Y, Okano T, Iigo M, Fukada Y: Light-Dependent Expression of Pinopsin Gene in Chicken Pineal Gland. / Journal of Neurochemistry 1998, 70 (3) : 908鈥?13. CrossRef
    63. Rajendran RR, Van Niel EE, Stenkamp DL, Cunningham LL, Raymond PA, Gonzalez-Fernandez F: Zebrafish interphotoreceptor retinoid-binding protein: differential circadian expression among cone subtypes. / J Exp Biol 1996, 199 (12) : 2775鈥?787.
    64. Springer AD, Gaffney JS: Retinal projections in the goldfish: a study using cobaltous-lysine. / J Comp Neurol 1981, 203 (3) : 401鈥?24. CrossRef
    65. Springer AD, Mednick AS: Selective innervation of the goldfish suprachiasmatic nucleus by ventral retinal ganglion cell axons. / Brain Res 1984, 323 (2) : 293鈥?96. CrossRef
    66. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of Embryonic Development of the Zebrafish. / Developmental Dynamics 1995, 203: 253鈥?10. CrossRef
    67. Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W: Mutations affecting development of the zebrafish retina. / Development 1996, 123: 263鈥?73.
    68. Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, / et al.: Mutations affecting the development of the embryonic zebrafish brain. / Development 1996, 123: 165鈥?78.
    69. Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, Izpisua Belmonte JC, Halpern ME: Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. / Development 2000, 127 (23) : 5101鈥?112.
    70. Krauss S, Concordet JP, Ingham PW: A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. / Cell 1993, 75 (7) : 1431鈥?444. CrossRef
    71. Pierce LX, Harrison D, Liang JO: The Time Reaper 5-Channel Automatic Liquid Dispenser: a new tool for studying zebrafish development. / Zebrafish 2007, 4 (3) : 169鈥?77. CrossRef
    72. Laird DW, Molday RS: Evidence agains the role of rhodopsin in rod outer segment binding to RPE cells. / Invest Ophthalmol Vis Sci 1988, 29: 419鈥?28.
    73. Hicks D, Molday RS: Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. / Exp Eye Res 1986, 42 (1) : 55鈥?1. CrossRef
    74. Liman ER, Tytgat J, Hess P: Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. / Neuron 1992, 9 (5) : 861鈥?71. CrossRef
    75. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. / J Mol Biol 1990, 215 (3) : 403鈥?10.
  • 作者单位:Ramil R Noche (2) (5)
    Po-Nien Lu (1) (2)
    Lauren Goldstein-Kral (3)
    Eric Glasgow (4)
    Jennifer O Liang (1)

    2. Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    5. Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, 02115, Boston, Massachusetts, USA
    1. Department of Biology, University of Minnesota-Duluth, 1035 Kirby Drive, 55812, Duluth, Minnesota, USA
    3. Hathaway Brown High School, 19600 North Park, 44122, Boulevard, Shaker Heights, Ohio, USA
    4. Department of Oncology, Georgetown University Medical Center, 4000 Reservoir Road, 20057, Washington, DC, NW, USA
文摘
Background The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc) mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin) is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b) and cryptochrome 3 (cry3), in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh) and serotonin-N-acetyltransferase (aanat2), involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT) siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their WT siblings. Conclusion Our data suggests that circadian rhythms can be initiated and maintained in the absence of SCN and other tissues in the ventral brain. However, the SCN may have a role in regulating the amplitude of rhythms when environmental cues are absent. This provides some of the first evidence that the SCN of teleosts is not essential for establishing circadian rhythms during development. Several SCN-independent circadian rhythms have also been found in mammalian species. Thus, zebrafish may serve as a model system for understanding how vertebrate embryos coordinate rhythms that are controlled by different circadian clocks.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.