Reconfigurable hybrid CT/DT delta-sigma modulator with op-amp sharing technique dedicated to multi mode receivers
详细信息    查看全文
  • 作者:Mohammad Honarparvar (1)
    Esmaeil Najafi Aghdam (1)
  • 关键词:Delta sigma modulator ; Op ; amp sharing ; Noise shaping enhancement ; Reconfigurable ; Multi mode receiver
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:79
  • 期:2
  • 页码:413-426
  • 全文大小:1,529 KB
  • 参考文献:1. Li, X., & Ismail, M. (2002). / Multi-standard CMOS wireless receivers: analysis and design (Vol. 675). Netherlands: Springer.
    2. Rusu, A., Borodenkov, A., Ismail, M., & Tenhunen, H. (2006). A triple-mode sigma-delta modulator for multi-standard wireless radio receivers. / Analog Integrated Circuits and Signal Processing, / 47, 113-24. CrossRef
    3. Gielen, G., & Goris, E. (2005). Reconfigurable front-end architectures and A/D converters for flexible wireless transceivers for 4G radios.?In / Emerging Technologies: Circuits and Systems for 4G Mobile Wireless Communications, 2005. ETW '05. 2005 IEEE 7th CAS Symposium, pp. 13-8.
    4. Jose, B., Mathew, J., & Mythili, P. (2011). A multi-mode sigma-delta ADC for GSM/WCDMA/WLAN applications. / Journal of Signal Processing Systems, / 62, 117-30. CrossRef
    5. Honarparvar, M., Aghdam, E. N., Shamsi, M., Zahedi, A., & Zafaranchi, M. (2011). / A low power, high performance multi-mode delta-sigma ADC for GSM, WCDMA and WLAN standards. Presented at the 2011 International Conference on Electronic Devices, Systems and Applications (ICEDSA), Kuala Lumpur 2011.
    6. Ke, Y., Craninckx, J., & Gielen, G. (2007). Design strategy for continous-time delta-sigma based on power consideration for 4G radios. In / Signals, circuits and systems, 2007. ISSCS 2007. International Symposium, pp. 1-.
    7. Honarparvar, M. A., & Aghdam, E. N. (2012). / Dual mode reconfigurable continuous time delta-sigma modulator for GS M/WCDMA standards. Presented at the Electrical Engineering (ICEE), 2012 20th Iranian Conference.
    8. Schreier, R., Temes, G. C., & I. o. Electrical, and E. Engineers. (2005). / Understanding delta-sigma data converters. New Jersey: IEEE Press.
    9. Ortmanns, M., & Gerfers, F. (2006). / Continuous-time sigma-delta A/D conversion: fundamentals, performance limits and robust implementations (Vol. 21). Berlin: Springer.
    10. Pesenti, S. (2008). / Hybrid continuous-discrete-time multi-bit delta-sigma A/D converters with auto-ranging algorithm. Ph. D. dissertation, Dept. Eng., Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
    11. Chen, X., Wang, Y., Fujimoto, Y., Lo Re, P., Kanazawa, Y., Steensgaard, J., et al. (2007). A 18 mW CT ΔΣ modulator with 25?MHz bandwidth for next generation wireless applications. In / Custom Integrated Circuits Conference, 2007. CICC-7. IEEE, pp. 73-6.
    12. Gharbiya, A., & Johns, D. (2006). On the implementation of input-feedforward delta-sigma modulators. / Circuits and Systems II: Express Briefs, IEEE Transactions, / 53, 453-57. CrossRef
    13. Wang, Y., & Temes, G. C. (2009). Noise-coupled continuous-time delta-sigma ADCs. / Electronics Letters, / 45, 302-03. CrossRef
    14. Cherry, J. A., & Snelgrove, W. M. (1999). Excess loop delay in continuous-time delta-sigma modulators. / Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions, / 46, 376-89. CrossRef
    15. Yan, S., & Sánchez-Sinencio, E. (2004). A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth. / Solid-State Circuits, IEEE Journal, / 39, 75-6. CrossRef
    16. Ke, Y., Radiom, S., Craninckx, J., Vandenbosch, G., & Gielen, G. G. E. (2009). A systematic design methodology for power-optimal design of high-order multi-bit continuous-time delta-sigma modulators. / Analog Integrated Circuits and Signal Processing, / 58, 215-25. CrossRef
    17. Brigati, S., Francesconi, F., Malcovati, P., Tonietto, D., Baschirotto, A., & Maloberti, F. (1999). Modeling sigma-delta modulator non-idealities in SIMULINK(R). In / Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS -9, Vol. 2, pp. 384-87.
    18. Webb,?M., & Tang, H. (2006). System-level simulation for continuous-time delta-sigma modulator in MATLAB SIMULINK. In / Proceedings of the 5th WSEAS International Conference on Circuits, Systems, Electronics, Control? & Signal Processing, Dallas, TX, pp. 236-41.
    19. Martin, K., & Johns, D. (1997). / Analog integrated circuit design. New York: Wiely.
    20. Mahmoud, S. A., & Soliman, A. M. (1998). The differential difference operational floating amplifier: a new block for analog signal processing in MOS technology. / Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions, / 45, 148-58. CrossRef
    21. Hernández, L., Wiesbauer, A., Paton, S., & Di Giandomencio, A. (2004). Modelling and optimization of low pass continuous-time sigma delta modulators for clock jitter noise reduction. In / Circuits and Systems, 2004. ISCAS-4, / Vol. 1. Proceedings of the 2004 International Symposium, pp. I-1072-5.
    22. Baird, R. T., & Fiez, T. S. (1995). Linearity enhancement of multibit delta sigma and D/A converters using data weighted averaging. / IEEE Transactions on Circuits and Systems Ii-Analog and Digital Signal Processing, / 42, 753-62. CrossRef
    23. Schreier, R., & Zhang, B. (1995). Noise-shaped multibit D/A convertor employing unit elements. / Electronics Letters, / 31, 1712-713. CrossRef
    24. Galton, I. (1996). Noise-shaping D/A converters for ΔΣ modulation. In / Circuits and Systems, 1996. ISCAS-6., Connecting the World., 1996 IEEE International Symposium, pp. 441-44.
    25. Galton, I. (1997). Spectral shaping of circuit errors in digital-to-analog converters. / Circuits and Systems II: Analog and digital signal processing, IEEE Transactions, / 44, 808-17. CrossRef
    26. Aghdam, E. N., & Benabes, P. (2005). Higher order dynamic element matching by shortened tree-structure in delta-sigma modulators. In / Circuit Theory and Design, 2005, / Vol. 1. Proceedings of the 2005 European Conference on, pp. I/201–I/204.
    27. Aghdam, E. N., & Benabes, P. (2006). A hardware efficient 3-bit second-order dynamic element matching circuit clocked at 300?MHz. In / Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium, p. 4 pp.
    28. Aghdam, E. N., Benabes, P., & Abbasszadeh, J. (2009). Completely first order and tone free partitioned data weighted averaging technique used in a multibit delta sigma modulator. In / Circuit Theory and Design, 2009. ECCTD 2009. European Conference, pp. 53-6.
    29. Chang, T. H., & Dung, L. L. (2004). New wideband cascaded ΣΔ modulator for multimode wireless receiver. / IEICE Electronics Express, / 1, 57-2. CrossRef
  • 作者单位:Mohammad Honarparvar (1)
    Esmaeil Najafi Aghdam (1)

    1. Integrated Circuits Design Laboratory, Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
  • ISSN:1573-1979
文摘
A novel multi mode low pass hybrid continuous/discrete time delta sigma modulator which is suitable for low power wide band applications is presented in this article. The proposed topology can adapt itself for operating in various signal bandwidths as well as different signal to noise plus distortion ratios (SNDRs). The novelty of the proposed modulator lies in the fact that several techniques have been employed simultaneously that not only can reduce the power consumption, but also it can increase the performance of the modulator. Continuous time integrator is utilized to alleviate the specs for the first stage op-amp. The modulator employs an op-amp sharing technique, which decreases the power consumption dramatically due to elimination of the power hungry adder before the quantizer in the feed forward topology. Another attractive advantage of the proposed modulator is using the noise-shaping enhancement technique which can increase the performance of the modulator without using analog active blocks. The unused block of the modulator can be made inactive to achieve less power dissipation. Behavioral simulations in MATLAB environment show the SNDR of 91/86/73?dB over 0.2/2/20?MHz signal bandwidth.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.