Multilevel Monte Carlo method for parabolic stochastic partial differential equations
详细信息    查看全文
  • 作者:Andrea Barth (1)
    Annika Lang (1)
    Christoph Schwab (1)
  • 关键词:Multilevel Monte Carlo ; Stochastic partial differential equations ; Stochastic Finite Element Methods ; Stochastic parabolic equation ; Multilevel approximations ; 60H15 ; 60H35 ; 65C30 ; 41A25 ; 65C05 ; 65N30
  • 刊名:BIT Numerical Mathematics
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:53
  • 期:1
  • 页码:3-27
  • 全文大小:775KB
  • 参考文献:1. Auscher, P., Tchamitchian, P.: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: / L 2 theory. J. Anal. Math. 90, 1-2 (2003) CrossRef
    2. Barth, A.: A finite element method for martingale-driven stochastic partial differential equations. Commum. Stoch. Anal. 4(3), 355-75 (2010)
    3. Barth, A., Lang, A.: / L / p and almost sure convergence of a Milstein scheme for stochastic partial differential equations. SAM Report 2011-15, Seminar for Applied Mathematics, ETH Zurich (2011)
    4. Barth, A., Lang, A.: Milstein approximation for advection-diffusion equations driven multiplicative noncontinuous martingale noises. Appl. Math. Optim. (2012). doi:10.1007/s00245-012-9176-y
    5. Barth, A., Lang, A.: Simulation of stochastic partial differential equations using finite element methods. Stochastics 84(2-), 217-31 (2012)
    6. Barth, A., Schwab, Ch., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123-61 (2011) CrossRef
    7. Chow, P.L., Jiang, J.L., Menaldi, J.L.: Pathwise convergence of approximate solutions to Zakai’s equation in a bounded domain. In: Da?Prato, G. et al. (eds.) Stochastic Partial Differential Equations and Applications. Proceedings of the Third Meeting on Stochastic Partial Differential Equations and Applications held at Villa Madruzzo, Trento, Italy, January 1990. Pitman Res. Notes Math. Ser., vol.?268, pp.?111-23. Longman Scientific & Technical, Harlow (1992)
    8. Clark, D.S.: Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16, 279-81 (1987) CrossRef
    9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol.?44. Cambridge University Press, Cambridge (1992) CrossRef
    10. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol.?194. Springer, Berlin (2000)
    11. Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT Numer. Math. 49(2), 343-56 (2009) CrossRef
    12. Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A. et al. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006. Selected Papers Based on the Presentations at the 7th International Conference ‘Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing- Ulm, Germany, August 14-8, 2006, pp.?343-58. Springer, Berlin (2008) CrossRef
    13. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607-17 (2008) CrossRef
    14. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Divergence of the multilevel Monte Carlo method (2011). arXiv:1105.0226 [math.PR]
    15. Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77(1), 205-44 (2009) CrossRef
    16. Jentzen, A., R?ckner, M.: A Milstein scheme for SPDEs (2010). arXiv:1001.2751 [math.NA]
    17. Kantorovitz, S.: On Liu’s analyticity criterion for semigroups. Semigroup Forum 53(2), 262-65 (1996) CrossRef
    18. Kato, T.: Perturbation Theory for Linear Operators, Corr. printing of the 2nd?edn. Grundlehren der mathematischen Wissenschaften, vol.?132. Springer, Berlin (1980)
    19. Kloeden, P., Lord, G., Neuenkirch, A., Shardlow, T.: The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds. J. Comput. Appl. Math. 235(5), 1245-260 (2011) CrossRef
    20. Kovács, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408-27 (2010) CrossRef
    21. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise (2011). arXiv:1103.4504 [math.NA]
    22. Lang, A.: Mean square convergence of a semidiscrete scheme for SPDEs of Zakai type driven by square integrable martingales. Proc. Comput. Sci. 1(1), 1609-617 (2010). ICCS 2010
    23. Mishra, S., Schwab, Ch.: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput. 81, 1979-018 (2012) CrossRef
    24. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol.?44. Springer, New York (1983) CrossRef
    25. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Encyclopedia of Mathematics and Its Applications, vol.?113. Cambridge University Press, Cambridge (2007) CrossRef
    26. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd revised and expanded edn. Springer Series in Computational Mathematics, vol.?25. Springer, Berlin (2006)
  • 作者单位:Andrea Barth (1)
    Annika Lang (1)
    Christoph Schwab (1)

    1. Seminar für Angewandte Mathematik, ETH, R?mistrasse 101, 8092, Zürich, Switzerland
  • ISSN:1572-9125
文摘
We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler–Maruyama discretization in time yields mean square convergence of order one in space and of order?1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.