Hawaiian Drosophila genomes: size variation and evolutionary expansions
详细信息    查看全文
  • 作者:Elysse M. Craddock ; Joseph G. Gall ; Mark Jonas
  • 关键词:Genome size evolution ; Heterochromatin ; Karyotypic change ; Satellite DNA ; Hawaiian Drosophila ; X chromosome ; Dot chromosome
  • 刊名:Genetica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:144
  • 期:1
  • 页码:107-124
  • 全文大小:1,012 KB
  • 参考文献:Abad JP, Carmena M, Baars S, Saunders RD, Glover DM, Ludena P, Sentis C, Tyler-Smith C, Villasante A (1992) Dodeca satellite: a conserved G + C rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci USA 89:4663–4667PubMedCentral PubMed CrossRef
    Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMed CrossRef
    Appels R, Peacock WJ (1978) The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila. Int Rev Cytol Suppl 8:69–126PubMed CrossRef
    Baker R, DeSalle R (1997) Multiple sources of character evolution and the phylogeny of Hawaiian drosophilids. Syst Biol 46(4):654–673PubMed CrossRef
    Bensasson D, Petrov DA, Zhang DX, Hartl DL, Hewitt GM (2001) Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol Biol Evol 18:246–253PubMed CrossRef
    Bergman CM, Quesneville H, Anxolabéhère D, Ashburner M (2006) Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 7:R112PubMedCentral PubMed CrossRef
    Biémont C, Vieira C (2005) What transposable elements tell us about genome organization and evolution: the case of Drosophila. Cytogenet Genome Res 110:25–34PubMed CrossRef
    Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524PubMed CrossRef
    Biessmann H, Zurovcova M, Yao JG, Lozovskaya E, Walter MF (2000) A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma 109:372–380PubMed CrossRef
    Bonaccorsi S, Lohe A (1991) Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics 129:177–189PubMedCentral PubMed
    Bonacum J, O’Grady PM, Kambysellis MP, DeSalle R (2005) Phylogeny and age of diversification of the planitibia species group of the Hawaiian Drosophila. Molec Phylog Evol 37:73–82CrossRef
    Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177:1277–1290PubMedCentral PubMed CrossRef
    Boulesteix M, Weiss M, Biémont C (2006) Differences in genome size between closely related species: the Drosophila melanogaster species subgroup. Mol Biol Evol 23:162–167PubMed CrossRef
    Burrack LS, Berman J (2012) Flexibility of centromere and kinetochore structures. Trends Genet 28:204–212PubMedCentral PubMed CrossRef
    Carson HL (1971) Speciation and the founder principle. Stadler Genet Symp 3:51–70
    Carson HL (1983) Chromosomal sequences and interisland colonization in Hawaiian Drosophila. Genetics 103:465–482PubMedCentral PubMed
    Carson HL, Clague DA (1995) Geology and biogeography of the Hawaiian islands. In: Wagner WL, Funk VA (eds) Hawaiian biogeography. Smithsonian Institution Press, Washington, pp 14–29
    Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Syst 15:97–131CrossRef
    Carson HL, Lockwood JP, Craddock EM (1990) Extinction and recolonization of local populations on a growing shield volcano. Proc Natl Acad Sci USA 87:7055–7057PubMedCentral PubMed CrossRef
    Celniker SE, Rubin GM (2003) The Drosophila melanogaster genome. Annu Rev Genomics Hum Genet 4:89–117PubMed CrossRef
    Chang LS, Carson HL (1985) Metaphase karyotype identity in four homosequential Drosophila species from Hawaii. Can J Genet Cytol 27:308–311CrossRef
    Charlesworth B, Barton N (2004) Genome size: does bigger mean worse? Curr Biol 14:R233–R235PubMed CrossRef
    Charlesworth B, Jarne P, Assimacopoulos S (1994a) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet Res 64:183–197PubMed CrossRef
    Charlesworth B, Sniegowsky P, Stephan W (1994b) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220PubMed CrossRef
    Clayton FE (1966) Preliminary report on the karyotypes of Hawaiian Drosophilidae. Univ Texas Publ 6615:397–404
    Clayton FE (1969) Variations in the metaphase chromosomes of Hawaiian Drosophilidae. Univ Texas Publ 6918:95–110
    Clayton FE (1985) The meiotic and mitotic chromosomes of picture-winged Hawaiian Drosophila species. I. Drosophila grimshawi and D. cyrtoloma. Can J Genet Cytol 27(4):441–449PubMed CrossRef
    Clayton FE (1988) The role of heterochromatin in karyotype variation among Hawaiian picture-winged Drosophila. Pac Sci 42:28–47
    Clayton FE, Guest WC (1986) Overview of chromosomal evolution in the family Drosophilidae. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila, vol 3e. Academic Press, London, pp 1–38
    Clayton FE, Wheeler MR (1975) A catalog of Drosophila metaphase chromosome configurations. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 471–512
    Cordeiro M, Wheeler L, Lee CS, Kastritsis CD, Richardson RH (1975) Heterochromatic chromosomes and satellite DNAs of Drosophila nasutoides. Chromosoma 51:65–73PubMed CrossRef
    Cordeiro-Stone M, Lee CS (1976) Studies on the satellite DNAs of Drosophila nasutoides: their buoyant densities, melting temperatures, reassociation rates and localizations in polytene chromosomes. J Mol Biol 104:1–24PubMed CrossRef
    Cuadrado A, Jouve N (2011) Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster. BMC Genomics 12:205PubMedCentral PubMed CrossRef
    Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603PubMed CrossRef
    Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRef
    Endow SA, Polan ML, Gall JG (1975) Satellite DNA sequences of Drosophila melanogaster. J Mol Biol 96(4):665–674PubMed CrossRef
    Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15CrossRef
    Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7(10):e1000234. doi:10.​1371/​journal.​pbio.​1000234 PubMedCentral PubMed CrossRef
    Ferree PM, Prasad S (2012) How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. Genet Res Int. doi:10.​1155/​2012/​430136 PubMedCentral PubMed
    Gall JG, Atherton DD (1974) Satellite DNA sequences in Drosophila virilis. J Mol Biol 85:633–664PubMed CrossRef
    Gall JG, Cohen EH, Polan ML (1971) Repetitive DNA sequences in Drosophila. Chromosoma 33:319–344PubMed CrossRef
    Gallach M (2014) Recurrent turnover of chromosome-specific satellites in Drosophila. Genome Biol Evol 6(6):1279–1286PubMedCentral PubMed CrossRef
    González J, Petrov DA (2009) The adaptive role of transposable elements in the Drosophila genome. Gene 448:124–133PubMedCentral PubMed CrossRef
    Gregory TR (2015) Animal genome size database (release 2.0). http://​www.​genomesize.​com
    Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101:228–238PubMed CrossRef
    Hawkins JS, Grover CE, Wendel JF (2008) Repeated big bangs and the expanding universe: directionality in plant genome size evolution. Plant Sci 174:557–562CrossRef
    He B, Caudy A, Parsons L, Rosebrock A, Pane A, Raj S, Wieschaus E (2012) Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster. Genome Res 22:2507–2519PubMedCentral PubMed CrossRef
    Heikkinen E, Launonen V, Muller E, Bachmann L (1995) The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. J Mol Evol 41:604–614PubMed CrossRef
    Hennig W (1999) Heterochromatin. Chromosoma 108:1–9PubMed CrossRef
    Hennig W, Hennig I, Stein H (1970) Repeated sequences in the DNA of Drosophila and their localization in giant chromosomes. Chromosoma 32(1):31–63PubMed CrossRef
    Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A et al (2002) Heterochromatic sequences in a Drosophila whole genome shotgun assembly. Genome Biol 3(12):0085.1–0085.16CrossRef
    Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E et al (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 15:1625–1628CrossRef
    Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE et al (2015) The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res 25:445–458PubMedCentral PubMed CrossRef
    Hsieh T, Brutlag D (1979) Sequence and sequence variation within the 1.688 g/cm3 satellite DNA of Drosophila melanogaster. J Mol Biol 135(2):465–481PubMed CrossRef
    Kacmarczyk Th, Craddock EM (2000) Cell size is a factor in body size variation among Hawaiian and non Hawaiian species of Drosophila. Dros Inf Serv 83:144–148 (plus Corrigendum: Dros Inf Serv 85:171)
    Kambysellis MP, Craddock EM (1997) Ecological and reproductive shifts in the diversification of the endemic Hawaiian Drosophila. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge Univ Press, Cambridge, pp 475–509
    Kambysellis MP, Ho K-F, Craddock EM, Piano F, Parisi M, Cohen J (1995) Pattern of ecological shifts in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny. Curr Biol 5(10):1129–1139PubMed CrossRef
    Kaneshiro KY (1997) R.C.L. Perkins’ legacy to evolutionary research on Hawaiian Drosophilidae (Diptera). Pac Sci 51:450–461
    Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569–6574PubMedCentral PubMed CrossRef
    Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63PubMed CrossRef
    Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99PubMed CrossRef
    Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24PubMed CrossRef
    Kloc A, Martienssen R (2008) RNAi, heterochromatin and the cell cycle. Trends Genet 24(10):511–517. doi:10.​1016/​j.​tig.​2008.​08.​002 PubMed CrossRef
    Kuhn GCS (2015) Satellite DNA transcripts have diverse biological roles in Drosophila. Heredity 115:1–2. doi:10.​1038/​hdy.​2015.​12 PubMed CrossRef
    Lamb JC, Theuri J, Birchler JA (2004) What’s in a centromere? Genome Biol 5:239PubMedCentral PubMed CrossRef
    Lapoint RT, Magnacca KN, O’Grady PM (2014) Phylogenetics of the antopocerus-modified tarsus clade of Hawaiian Drosophila: diversification across the Hawaiian islands. PLoS One 9(11):e113227PubMedCentral PubMed CrossRef
    Lemeunier F, Dutrillaux B, Ashburner M (1978) Relationships within the melanogaster subgroup species of the genus Drosophila (Sophophora). III. The mitotic chromosomes and quinacrine fluorescent patterns of the polytene chromosomes. Chromosoma 69:349–361CrossRef
    Levasseur A, Pontarotti P (2011) The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol Direct 6:11PubMedCentral PubMed CrossRef
    Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4(3):203–221PubMed
    Lohe AR, Brutlag DL (1986) Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proc Natl Acad Sci USA 83:696–700PubMedCentral PubMed CrossRef
    Lohe AR, Brutlag DL (1987) Identical satellite DNA sequences in sibling species of Drosophila. J Mol Biol 194(2):161–170PubMed CrossRef
    Lynch M (2007a) The origins of genome architecture. Sinauer Assoc. Inc, Sunderland
    Lynch M (2007b) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104(Suppl 1):8597–8604PubMedCentral PubMed CrossRef
    Lynch M, Connery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMed CrossRef
    Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251–259PubMedCentral PubMed CrossRef
    Magnacca KN, Price DK (2015) Rapid adaptive radiation and host plant conservation in the Hawaiian picture wing Drosophila (Diptera: Drosophilidae). Mol Phylogenet Evol 92:226–242PubMed CrossRef
    Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718PubMed CrossRef
    Mandel M, Schildkraut CL, Marmur J (1968) Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. In: Grossman L, Moldave K (eds) Methods in enzymology XIIB. Academic Press, New York, pp 184–195
    Maumus F, Fiston-Lavier A, Quesneville H (2015) Impact of transposable elements on insect genomes and biology. Curr Opin Insect Sci 7:30–36CrossRef
    Miklos GLG, Gill AC (1981) The DNA sequences of cloned complex satellite DNAs from Hawaiian Drosophila and their bearing on satellite DNA sequence conservation. Chromosoma 82:409–427PubMed CrossRef
    Morales-Hojas R, Vieira J (2012) Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila. PLoS One 7(11):e49552PubMedCentral PubMed CrossRef
    O’Grady PM, DeSalle R (2008) Out of Hawaii: the origin and biogeographic history of the genus Scaptomyza (Diptera, Drosophilidae). Biol Lett 4(2):195–199PubMedCentral PubMed CrossRef
    O’Grady PM, Bonacum J, DeSalle R, Do Val F (2003) The placement of Engiscaptomyza Grimshawomyia, and Titanochaeta, three clades of endemic Hawaiian Drosophilidae (Diptera). Zootaxa 159:1–16
    O’Grady PM, Magnacca KN, Lapoint RT (2010) Taxonomic relationships within the endemic Hawaiian Drosophilidae. Rec Hawaii Biol Surv 108:3–35
    O’Grady PM, Lapoint RT, Bonacum J, Lasola J, Owen E, Wu Y, DeSalle R (2011) Phylogenetic and ecological relationships of the Hawaiian Drosophila inferred by mitochondrial DNA analysis. Mol Phylogenet Evol 58(2):244–256PubMed CrossRef
    Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607PubMed CrossRef
    Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672PubMed CrossRef
    Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290PubMed CrossRef
    Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28PubMed CrossRef
    Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91PubMed CrossRef
    Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062PubMed CrossRef
    Pezer Z, Brajković J, Feliciello I, Ugarković D (2011) Transcription of satellite DNAs in insects. Prog Mol Subcell Biol 51:161–178PubMed CrossRef
    Pidoux AL, Allshire RC (2005) The role of heterochromatin in centromere function. Philos Trans R Soc Lond B Biol Sci 360:569–579PubMedCentral PubMed CrossRef
    Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269PubMedCentral PubMed CrossRef
    Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808PubMedCentral PubMed CrossRef
    Rasch EM (1985) DNA ‘‘standards’’ and the range of accurate DNA estimates by Feulgen absorption microspectrophotometry. In: Cowden RR, Harrison SH (eds) Advances in microscopy. Alan R Liss, New York, pp 137–166
    Remsen J, O’Grady P (2002) Phylogeny of Drosophilinae (Diptera:Drosophilidae), with comments on combined analysis and character support. Mol Phylogenet Evol 24:249–264PubMed CrossRef
    Rošić S, Köhler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207(3):335–349PubMedCentral PubMed CrossRef
    Russo CAM, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol 12:391–404PubMed
    Russo CAM, Mello B, Frazao A, Voloch CM (2013) Phylogenetic analysis and a time tree for a large drosophilid data set (Diptera: Drosophilidae). Zool J Linn Soc 169:765–775CrossRef
    Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM et al (2008) Polytene chromosome maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655PubMedCentral PubMed CrossRef
    Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L et al (2005) Progressive proximal expansion of the primate X chromosome centromere. Proc Nat Acad Sci USA 102:10563–10568PubMedCentral PubMed CrossRef
    Schweber MS (1974) The satellite bands of the DNA of Drosophila virilis. Chromosoma 44:371–382PubMed CrossRef
    Shapiro JA, von Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev 80:227–250PubMed CrossRef
    Singh ND, Petrov DA (2004) Rapid sequence turnover at an intergenic locus in Drosophila. Mol Biol Evol 21(4):670–680PubMed CrossRef
    Slawson EE, Shaffer CD, Malone CD, Leung W, Kellmann E, Shevchek RB et al (2006) Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol 7:R15. doi:10.​1186/​gb-2006-7-2-r15 PubMedCentral PubMed CrossRef
    Smith GP (1976) Evolution of repeated DNA sequences by unequal crossing-over. Science 191:528–535PubMed CrossRef
    Strachan T, Coen E, Webb D, Dover G (1982) Modes and rates of change of complex DNA families of Drosophila. J Mol Biol 158:37–54PubMed CrossRef
    Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194PubMedCentral PubMed CrossRef
    Templeton AR (1980) The theory of speciation via the founder principle. Genetics 94:1011–1038PubMedCentral PubMed
    Templeton AR (2008) The reality and importance of founder speciation in evolution. BioEssays 30:470–479PubMed CrossRef
    Ugarković D, Plohl M (2002) Variation in satellite DNA profiles—causes and effects. EMBO J 21:5955–5959PubMed CrossRef
    Usakin L, Abad J, Vagin VV, De Pablos B, Villasante A, Gvozdev VA (2007) Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries. Genetics 176:1343–1349PubMedCentral PubMed CrossRef
    Vinogradov AE (2004) Evolution of genome size: multilevel selection, mutation bias or dynamical chaos? Curr Opin Genet Dev 14:620–626PubMed CrossRef
    Westerman M, Barton NH, Hewitt GM (1987) Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity 58:221–228CrossRef
    Whitney KD, Garland T Jr (2010) Did genetic drift drive increases in genome complexity? PLoS Genet 6(8):e1001080PubMedCentral PubMed CrossRef
    Whitney KD, Boussau B, Baack EJ, Garland T Jr (2011) Drift and genome complexity revisited. PLoS Genet 7(6):e1002092PubMedCentral PubMed CrossRef
    Yoon JS, Richardson RH (1976) Evolution of Hawaiian Drosophilidae: II. Patterns and rates of chromosome evolution in an antopocerus phylogeny. Genetics 83:827–843PubMedCentral PubMed
    Yoon JS, Richardson RH (1978) Evolution in Hawaiian Drosophilidae III. The microchromosome and heterochromatin of Drosophila. Evolution 32:475–484CrossRef
    Zacharias H (1986) Tissue-specific schedule of selective replication in Drosophila nasutoides. Roux’s Arch Dev Biol 195:378–388CrossRef
  • 作者单位:Elysse M. Craddock (1)
    Joseph G. Gall (2)
    Mark Jonas (1)

    1. Natural Sciences Building, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577, USA
    2. Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Animal Genetics and Genomics
    Plant Genetics and Genomics
    Human Genetics
    Microbial Genetics and Genomics
  • 出版者:Springer Netherlands
  • ISSN:1573-6857
文摘
This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22–70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation. Keywords Genome size evolution Heterochromatin Karyotypic change Satellite DNA Hawaiian Drosophila X chromosome Dot chromosome
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.