Ca2+ clearance by plasmalemmal NCLX, Li+-permeable Na+/Ca2+ exchanger, is required for the sustained exocytosis in rat insulinoma
详细信息    查看全文
  • 作者:Young-Eun Han ; Shin-Young Ryu ; Sun-Hyun Park…
  • 关键词:Ca2+ transport ; Na+/Ca2+ exchanger ; Exocytosis ; Capacitance ; Pancreatic β ; cell
  • 刊名:Pfl篓鹿gers Archiv - European Journal of Physiology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:467
  • 期:12
  • 页码:2461-2472
  • 全文大小:1,432 KB
  • 参考文献:1.Ashcroft FM, Proks P, Smith PA, ?mm?l? C, Bokvist K, Rorsman P (1994) Stimulus-secretion coupling in pancreatic β cells. J Cell Biochem 55:54-5. doi:10.-002/?jcb.-40550007 CrossRef PubMed
    2.Barg S, Eliasson L, Renstr?m E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse β-cells. Diabetes 51:S74–S82. doi:10.-337/?diabetes.-1.-007.?S74 CrossRef PubMed
    3.Barg S, Huang P, Eliasson L, Nelson DJ, Obermüller S, Rorsman P, Thévenod F, Renstr?m E (2001) Priming of insulin granules for exocytosis by granular Cl?/sup> uptake and acidification. J Cell Sci 114:2145-154PubMed
    4.Barg S, Ma X, Eliasson L, Galvanovskis J, Gopel SO, Obermuller S, Platzer J, Renstrom E, Trus M, Atlas D, Striessnig J, Rorsman P (2001) Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J 81:3308-323. doi:10.-016/?s0006-3495(01)75964-4 PubMedCentral CrossRef PubMed
    5.Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127-155PubMed
    6.Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763-54PubMed
    7.Cai X, Lytton J (2004) Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem 279:5867-876. doi:10.-074/?jbc.?M310908200 CrossRef PubMed
    8.Crompton M, Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91:599-08. doi:10.-111/?j.-432-1033.-978.?tb12713.?x CrossRef PubMed
    9.Curry DL, Bennett L, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83:572-84. doi:10.-210/?endo-83-3-572 CrossRef PubMed
    10.Deval E, Raymond G, Cognard C (2002) Na+–Ca2+ exchange activity in rat skeletal myotubes: effect of lithium ions. Cell Calcium 31:37-4. doi:10.-054/?ceca.-001.-254 CrossRef PubMed
    11.Eliasson L, Renstr?m E, Ding W-G, Proks P, Rorsman P (1997) Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic B-cells. J Physiol 503:399-12. doi:10.-111/?j.-469-7793.-997.-99bh.?x PubMedCentral CrossRef PubMed
    12.Gembal M, Gilon P, Henquin JC (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288-295. doi:10.-172/?jci115714 PubMedCentral CrossRef PubMed
    13.Hamming KS, Riedel MJ, Soliman D, Matemisz LC, Webster NJ, Searle GJ, MacDonald PE, Light PE (2008) Splice variant-dependent regulation of β-cell sodium-calcium exchange by acyl-coenzyme As. Mol Endocrinol 22:2293-306. doi:10.-210/?me.-008-0053 CrossRef PubMed
    14.Henquin J-C, Ishiyama N, Nenquin M, Ravier MA, Jonas J-C (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51:S60–S67. doi:10.-337/?diabetes.-1.-007.?S60 CrossRef PubMed
    15.Kang L, He Z, Xu P, Fan J, Betz A, Brose N, Xu T (2006) Munc13-1 is required for the sustained release of insulin from pancreatic β cells. Cell Metab 3:463-68. doi:10.-016/?j.?cmet.-006.-4.-12 CrossRef PubMed
    16.Kanno T, Ma X, Barg S, Eliasson L, Galvanovskis J, Gopel S, Larsson M, Renstrom E, Rorsman P (2004) Large dense-core vesicle exocytosis in pancreatic b-cells monitored by capacitance measurements. Methods 33:302-11. doi:10.-016/?j.?ymeth.-004.-1.-03 CrossRef PubMed
    17.Lim A, Park S-H, Sohn J-W, Jeon J-H, Park J-H, Song D-K, Lee S-H, Ho W-K (2009) Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic β-cells. Diabetes 58:2813-819. doi:10.-337/?db09-0600 PubMedCentral CrossRef PubMed
    18.Luciani DS, Ao P, Hu X, Warnock GL, Johnson JD (2007) Voltage-gated Ca2+ influx and insulin secretion in human and mouse β-cells are impaired by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157. Eur J Pharmacol. doi:10.-016/?j.?ejphar.-007.-7.-55
    19.Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406:365-82. doi:10.-042/?bj20070619 CrossRef PubMed
    20.Nita II, Hershfinkel M, Fishman D, Ozeri E, Rutter GA, Sensi SL, Khananshvili D, Lewis EC, Sekler I (2012) The mitochondrial Na+/Ca2+ exchanger upregulates glucose dependent Ca2+ signalling linked to insulin secretion. PLoS One 7, e46649. doi:10.-371/?journal.?pone.-046649 PubMedCentral CrossRef PubMed
    21.Nita II, Hershfinkel M, Lewis EC, Sekler I (2015) A crosstalk between Na+ channels, Na+/K+ pump and mitochondrial Na+ transporters controls glucose-dependent cytosolic and mitochondrial Na+ signals. Cell Calcium 57:69-5. doi:10.-016/?j.?ceca.-014.-2.-07 CrossRef PubMed
    22.Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I (2004) Lithium-calcium exchange is mediated by
  • 作者单位:Young-Eun Han (1)
    Shin-Young Ryu (1)
    Sun-Hyun Park (1)
    Kyu-Hee Lee (1)
    Suk-Ho Lee (1)
    Won-Kyung Ho (1)

    1. Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
  • 刊物主题:Human Physiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2013
文摘
Na+/Ca2+ exchangers are key players for Ca2+ clearance in pancreatic β-cells, but their molecular determinants and roles in insulin secretion are not fully understood. In the present study, we newly discovered that the Li+-permeable Na+/Ca2+ exchangers (NCLX), which were known as mitochondrial Na+/Ca2+ exchangers, contributed to the Na+-dependent Ca2+ movement across the plasma membrane in rat INS-1 insulinoma cells. Na+/Ca2+ exchange activity by NCLX was comparable to that by the Na+/Ca2+ exchanger, NCX. We also confirmed the presence of NCLX proteins on the plasma membrane using immunocytochemistry and cell surface biotinylation experiments. We further investigated the role of NCLX on exocytosis function by measuring the capacitance increase in response to repetitive depolarization. Small interfering (si)RNA-mediated downregulation of NCLX did not affect the initial exocytosis, but significantly suppressed sustained exocytosis and recovery of exocytosis. XIP (NCX inhibitory peptide) or Na+ replacement for inhibiting Na+-dependent Ca2+ clearance also selectively suppressed sustained exocytosis. Consistent with the idea that sustained exocytosis requires ATP-dependent vesicle recruitment, mitochondrial function, assessed by mitochondrial membrane potential (ΔΨ), was impaired by siNCLX or XIP. However, depolarization-induced exocytosis was hardly affected by changes in intracellular Na+ concentration, suggesting a negligible contribution of mitochondrial Na+/Ca2+ exchanger. Taken together, our data indicate that Na+/Ca2+ exchanger-mediated Ca2+ clearance mediated by NCLX and NCX is crucial for optimizing mitochondrial function, which in turn contributes to vesicle recruitment for sustained exocytosis in pancreatic β-cells. Keywords Ca2+ transport Na+/Ca2+ exchanger Exocytosis Capacitance Pancreatic β-cell
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.