Shear stress mediates exocytosis of functional TRPV4 channels in endothelial cells
详细信息    查看全文
  • 作者:Sara Baratchi ; Juhura G. Almazi ; William Darby…
  • 关键词:TRPV4 ; Endothelium ; Shear stress ; Translocation ; Ca2+ ; Mechanotransduction
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:73
  • 期:3
  • 页码:649-666
  • 全文大小:4,166 KB
  • 参考文献:1.Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12(3):139–153. doi:10.​1038/​nrn2993 PubMed CrossRef
    2.Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450(7167):285–288. doi:10.​1038/​nature06254 PubMed CrossRef
    3.Ranade SS, Qiu Z, Woo S-H, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, Li Y-SJ, Chien S, Patapoutian A (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci USA 111(28):10347–10352. doi:10.​1073/​pnas.​1409233111 PubMed CrossRef PubMedCentral
    4.Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20. doi:10.​1016/​j.​devcel.​2005.​12.​006 PubMed CrossRef
    5.Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62. doi:10.​1038/​nrm2596 PubMed CrossRef PubMedCentral
    6.Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176. doi:10.​1016/​j.​ccr.​2005.​08.​009 PubMed CrossRef
    7.Lansman JB, Franco-Obregon A (2006) Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy. Clin Exp Pharmacol Physiol 33(7):649–656. doi:10.​1111/​j.​1440-1681.​2006.​04393.​x PubMed CrossRef
    8.Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:10.​1126/​science.​1116995 PubMed CrossRef
    9.Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117(12):2449–2460. doi:10.​1242/​jcs.​01232 PubMed CrossRef
    10.Mammoto A, Mammoto T, Ingber DE (2008) Rho signaling and mechanical control of vascular development. Curr Opin Hematol 15(3):228–234. doi:10.​1097/​MOH.​0b013e3282fa7445​ PubMed CrossRef
    11.Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):176–181. doi:10.​1038/​nature10812 PubMed CrossRef PubMedCentral
    12.Wehrle-Haller B (2007) Analysis of integrin dynamics by fluorescence recovery after photobleaching. Methods Mol Biol (Clifton, NJ) 370:173–202CrossRef
    13.Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM (2007) Differential transmission of actin motion within focal adhesions. Science 315(5808):111–115. doi:10.​1126/​science.​1135085 PubMed CrossRef
    14.Brown CM, Hebert B, Kolin DL, Zareno J, Whitmore L, Horwitz AR, Wiseman PW (2006) Probing the integrin-actin linkage using high-resolution protein velocity mapping. J Cell Sci 119(24):5204–5214. doi:10.​1242/​jcs.​03321 PubMed CrossRef
    15.Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323. doi:10.​1038/​nature10316 PubMed CrossRef
    16.Jackson WF (2000) Ion channels and vascular tone. Hypertension 35(1):173–178PubMed CrossRef PubMedCentral
    17.Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286(2):C195–C205. doi:10.​1152/​ajpcell.​00365.​2003 PubMed CrossRef
    18.Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62(24):2985–3001. doi:10.​1007/​s00018-005-5181-5 PubMed CrossRef
    19.Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298(2):H466–H476. doi:10.​1152/​ajpheart.​00854.​2009 PubMed CrossRef PubMedCentral
    20.Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Kohler R (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2(9):e827. doi:10.​1371/​journal.​pone.​0000827 PubMed CrossRef PubMedCentral
    21.Baratchi S, Tovar-Lopez FJ, Khoshmanesh K, Grace MS, Darby W, Almazi J, Mitchell A, McIntyre P (2014) Examination of the role of transient receptor potential vanilloid type 4 in endothelial responses to shear forces. Biomicrofluidics 8(4):044117. doi:10.​1063/​1.​4893272 PubMed CrossRef PubMedCentral
    22.Misonou H, Mohapatra DP, Park EW, Leung V, Zhen DK, Misonou K, Anderson AE, Trimmer JS (2004) Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci 7(7):711–718. doi:10.​1038/​nn1260 PubMed CrossRef
    23.Magoski NS, Kaczmarek LK (1998) Direct and indirect regulation of a single ion channel. J Physiol Lond 509(1):1. doi:10.​1111/​j.​1469-7793.​1998.​001bo.​x PubMed CrossRef PubMedCentral
    24.Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 25(24):5659–5669. doi:10.​1038/​sj.​emboj.​7601429 PubMed CrossRef PubMedCentral
    25.Xu H, Fu Y, Tian W, Cohen DM (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol 290(5):F1103–F1109. doi:10.​1152/​ajprenal.​00245.​2005 PubMed CrossRef
    26.Arniges M, Fernandez-Fernandez JM, Albrecht N, Schaefer M, Valverde MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281(3):1580–1586. doi:10.​1074/​jbc.​M511456200 PubMed CrossRef
    27.Lei L, Cao X, Yang F, Shi DJ, Tang YQ, Zheng J, Wang K (2013) A TRPV4 channel C-terminal folding recognition domain critical for trafficking and function. J Biol Chem 288(15):10427–10439. doi:10.​1074/​jbc.​M113.​457291 PubMed CrossRef PubMedCentral
    28.Cayouette S, Boulay G (2007) Intracellular trafficking of TRP channels. Cell Calcium 42(2):225–232. doi:10.​1016/​j.​ceca.​2007.​01.​014 PubMed CrossRef
    29.Wegierski T, Lewandrowski U, Mueller B, Sickmann A, Walz G (2009) Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem 284(5):2923–2933. doi:10.​1074/​jbc.​M805357200 PubMed CrossRef
    30.Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, Darby W, Liedtke W, Lew MJ, McIntyre P, Bunnett NW (2013) Protease-activated receptor 2 (PAR(2)) Protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288(8):5790–5802. doi:10.​1074/​jbc.​M112.​438184 PubMed CrossRef PubMedCentral
    31.Lu X, Gibbs JS, Hickman HD, David A, Dolan BP, Jin Y, Kranz DM, Bennink JR, Yewdell JW, Varma R (2012) Endogenous viral antigen processing generates peptide-specific MHC class I cell-surface clusters. Proc Natl Acad Sci USA 109(38):15407–15412. doi:10.​1073/​pnas.​1208696109 PubMed CrossRef PubMedCentral
    32.Hoger JH, Ilyin VI, Forsyth S, Hoger A (2002) Shear stress regulates the endothelial Kir2.1 ion channel. Proc Natl Acad Sci USA 99(11):7780–7785. doi:10.​1073/​pnas.​102184999 PubMed CrossRef PubMedCentral
    33.Barbier C, Boycott H, Eichel C, Louault F, Dilanian G, Coulombe A, Hatem S, Balse E (2014) Shear-stress triggered voltage-gated Kv1.5 channels exocytosis is altered in overloaded atria. Fundam Clin Pharmacol 28:79
    34.Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98(2):245–253. doi:10.​1161/​01.​RES.​0000200179.​29375.​cc PubMed CrossRef
    35.Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco-Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Trans Med 4(159):159ra148. doi:10.​1126/​scitranslmed.​3004276 CrossRef
    36.Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 139(5):1137–1155PubMed CrossRef PubMedCentral
    37.Deborde S, Perret E, Gravotta D, Deora A, Salvarezza S, Schreiner R, Rodriguez-Boulan E (2008) Clathrin is a key regulator of basolateral polarity. Nature 452(7188):719–723. doi:10.​1038/​nature06828 PubMed CrossRef PubMedCentral
    38.Sandvig K, van Deurs B (2002) Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 529(1):49–53PubMed CrossRef
    39.De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273–284. doi:10.​1038/​nrm2378 PubMed CrossRef
    40.Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10(6):839–850. doi:10.​1016/​j.​devcel.​2006.​04.​002 PubMed CrossRef
    41.Lazaro-Dieguez F, Colonna C, Cortegano M, Calvo M, Martinez SE, Egea G (2007) Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett 581(20):3875–3881. doi:10.​1016/​j.​febslet.​2007.​07.​015 PubMed CrossRef
    42.Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88(3):141–152. doi:10.​1016/​j.​ejcb.​2008.​10.​002 PubMed CrossRef
    43.Fan HC, Zhang X, McNaughton PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284(41):27884–27891. doi:10.​1074/​jbc.​M109.​028803 PubMed CrossRef PubMedCentral
    44.Mamenko M, Zaika OL, Boukelmoune N, Berrout J, O’Neil RG, Pochynyuk O (2013) Discrete control of TRPV4 channel function in the distal nephron by protein kinases A and C. J Biol Chem 288(28):20306–20314. doi:10.​1074/​jbc.​M113.​466797 PubMed CrossRef PubMedCentral
    45.Lu HZ, Fedak PWM, Dai XJ, Du CQ, Zhou YQ, Henkelman M, Mongroo PS, Lau A, Yamabi H, Hinek A, Husain M, Hannigan G, Coles JG (2006) Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 114(21):2271–2279. doi:10.​1161/​circulationaha.​106.​642330 PubMed CrossRef
    46.Hannigan GE, LeungHagesteijn C, FitzGibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta(1)-integrin-linked protein kinase. Nature 379(6560):91–96. doi:10.​1038/​379091a0 PubMed CrossRef
    47.Lee SL, Hsu EC, Chou CC, Chuang HC, Bai LY, Kulp SK, Chen CS (2011) Identification and characterization of a novel integrin-linked kinase inhibitor. J Med Chem 54(18):6364–6374. doi:10.​1021/​jm2007744 PubMed CrossRef PubMedCentral
    48.Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431. doi:10.​1038/​nature03952 PubMed CrossRef
    49.Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20(17):4639–4647. doi:10.​1093/​emboj/​20.​17.​4639 PubMed CrossRef PubMedCentral
    50.Raftopoulou M, Hall A (2004) Cell migration: rho GTPases lead the way. Dev Biol 265(1):23–32. doi:10.​1016/​j.​ydbio.​2003.​06.​003 PubMed CrossRef
    51.Baumer Y, Spindler V, Werthmann RC, Buenemann M, Waschke J (2009) Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced barrier breakdown. J Cell Physiol 220(3):716–726. doi:10.​1002/​jcp.​21819 PubMed CrossRef
    52.Rebecca Soffe, Sara Baratchi, Shiyang Tang, Mahyar Nasabi, Peter McIntyre, Arnan Mitchell, Khashayar K (2015) Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis. Sci Rep. doi:10.​1038/​srep11973
    53.Jaiswal JK, Rivera VM, Simon SM (2009) Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137(7):1308–1319. doi:10.​1016/​j.​cell.​2009.​04.​064 PubMed CrossRef PubMedCentral
    54.Tomes CN (2015) The proteins of exocytosis: lessons from the sperm model. Biochem J 465(3):359–370. doi:10.​1042/​bj20141169 PubMed CrossRef
    55.Chen JL, Ahluwalia JP, Stamnes M (2002) Selective effects of calcium chelators on anterograde and retrograde protein transport in the cell. J Biol Chem 277(38):35682–35687. doi:10.​1074/​jbc.​M204157200 PubMed CrossRef
    56.Porat A, Elazar Z (2000) Regulation of intra-Golgi membrane transport by calcium. J Biol Chem 275(38):29233–29237. doi:10.​1074/​jbc.​M005316200 PubMed CrossRef
    57.Hutcheson IR, Griffith TM (1997) Central role of intracellular calcium stores in acute flow- and agonist-evoked endothelial nitric oxide release. Br J Pharmacol 122(1):117–125. doi:10.​1038/​sj.​bjp.​0701340 PubMed CrossRef PubMedCentral
    58.Koo A, Nordsletten D, Umeton R, Yankama B, Ayyadurai S, Garcia-Cardena G, Dewey CF Jr (2013) In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology. Biophys J 104(10):2295–2306. doi:10.​1016/​j.​bpj.​2013.​03.​052 PubMed CrossRef PubMedCentral
    59.Jones SM, Howell KE, Henley JR, Cao H, McNiven MA (1998) Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279(5350):573–577. doi:10.​1126/​science.​279.​5350.​573 PubMed CrossRef
    60.Liu X, Bandyopadhyay BC, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281(22):15485–15495. doi:10.​1074/​jbc.​M600549200 PubMed CrossRef
    61.Becker D, Blase C, Bereiter-Hahn J, Jendrach M (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118(Pt 11):2435–2440. doi:10.​1242/​jcs.​02372 PubMed CrossRef
    62.Alenghat FJ, Nauli SM, Kolb R, Zhou J, Ingber DE (2004) Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 301(1):23–30. doi:10.​1016/​j.​yexcr.​2004.​08.​003 PubMed CrossRef
    63.Goswami C, Kuhn J, Heppenstall PA, Hucho T (2010) Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 5(7):e11654. doi:10.​1371/​journal.​pone.​0011654 PubMed CrossRef PubMedCentral
    64.Ridley AJ (2001) Rho proteins: linking signaling with membrane trafficking. Traffic (Copenhagen, Denmark) 2(5):303–310CrossRef
    65.Symons M, Rusk N (2003) Control of vesicular trafficking by Rho GTPases. Curr Biol CB 13(10):R409–R418PubMed CrossRef
    66.Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T, Paria B, Munaron L, Ambudkar IS (2012) TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 31(2):200–212. doi:10.​1038/​onc.​2011.​231 PubMed CrossRef
    67.Kawasaki J, Davis GE, Davis MJ (2004) Regulation of Ca2+-dependent K+ current by alphavbeta3 integrin engagement in vascular endothelium. J Biol Chem 279(13):12959–12966. doi:10.​1074/​jbc.​M313791200 PubMed CrossRef
    68.Chao JT, Gui P, Zamponi GW, Davis GE, Davis MJ (2011) Spatial association of the Cav1.2 calcium channel with alpha5beta1-integrin. Am J Physiol Cell Physiol 300(3):C477–C489. doi:10.​1152/​ajpcell.​00171.​2010 PubMed CrossRef PubMedCentral
    69.Carlson SS, Valdez G, Sanes JR (2010) Presynaptic calcium channels and alpha3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components. J Neurochem 115(3):654–666. doi:10.​1111/​j.​1471-4159.​2010.​06965.​x PubMed CrossRef PubMedCentral
    70.Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123–1130. doi:10.​1161/​circresaha.​108.​192930 PubMed CrossRef PubMedCentral
    71.Ho B, Bendeck MP (2009) Integrin linked kinase (ILK) expression and function in vascular smooth muscle cells. Cell Adh Migr 3(2):174–176. doi:10.​4161/​cam.​3.​2.​7374 PubMed CrossRef PubMedCentral
    72.Dedhar S, Williams B, Hannigan G (1999) Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling. Trends Cell Biol 9(8):319–323PubMed CrossRef
    73.Tu YZ, Huang Y, Zhang YJ, Hua Y, Wu CY (2001) A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol 153(3):585–598. doi:10.​1083/​jcb.​153.​3.​585 PubMed CrossRef PubMedCentral
    74.Troussard AA, Mawji NM, Ong C, Mui A, St Arnaud R, Dedhar S (2003) Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 278(25):22374–22378. doi:10.​1074/​jbc.​M303083200 PubMed CrossRef
    75.Bellis A, Castaldo D, Trimarco V, Monti MG, Chivasso P, Sadoshima J, Trimarco B, Morisco C (2009) Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arterioscler Thromb Vasc Biol 29(8):1207–1212. doi:10.​1161/​atvbaha.​109.​184135 PubMed CrossRef
    76.Hu Z, Xiong Y, Han X, Geng C, Jiang B, Huo Y, Luo J (2013) acute mechanical stretch promotes eNOS Activation in venous endothelial cells mainly via PKA and Akt pathways. PLoS One. doi:10.​1371/​journal.​pone.​0071359
    77.Wu CY, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155(4):505–510. doi:10.​1083/​jcb.​200108077 PubMed CrossRef PubMedCentral
    78.Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete JJ, Marcinkiewicz MM, McLane MA (1999) Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem 274(53):37809–37814PubMed CrossRef
    79.Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163. doi:10.​1038/​embor.​2012.​219 PubMed CrossRef PubMedCentral
    80.O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA 111(4):1316–1321. doi:10.​1073/​pnas.​1319569111 PubMed CrossRef PubMedCentral
    81.Pochynyuk O, Zaika O, O’Neil RG, Mamenko M (2013) Novel insights into TRPV4 function in the kidney. Pflugers Arch 465(2):177–186. doi:10.​1007/​s00424-012-1190-z PubMed CrossRef PubMedCentral
    82.Chen L, Kassmann M, Sendeski M, Tsvetkov D, Marko L, Michalick L, Riehle M, Liedtke WB, Kuebler WM, Harteneck C, Tepel M, Patzak A, Gollasch M (2015) Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature. Acta Physiol 213(2):481–491. doi:10.​1111/​apha.​12355 CrossRef
    83.Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 7(333):14. doi:10.​1126/​scisignal.​2005052 CrossRef
    84.Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT (2012) Elementary Ca2 + signals through endothelial TRPV4 channels regulate vascular function. Science 336(6081):597–601. doi:10.​1126/​science.​1216283 PubMed CrossRef PubMedCentral
  • 作者单位:Sara Baratchi (1)
    Juhura G. Almazi (1)
    William Darby (1)
    Francisco J. Tovar-Lopez (2)
    Arnan Mitchell (2)
    Peter McIntyre (1)

    1. School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
    2. School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, 3001, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Mechanosensitive ion channels are implicated in the biology of touch, pain, hearing and vascular reactivity; however, the identity of these ion channels and the molecular basis of their activation is poorly understood. We previously found that transient receptor potential vanilloid 4 (TRPV4) is a receptor operated ion channel that is sensitised and activated by mechanical stress. Here, we investigated the effects of mechanical stimulation on TRPV4 localisation and activation in native and recombinant TRPV4-expressing cells. We used a combination of total internal reflection fluorescence microscopy, cell surface biotinylation assay and Ca2+ imaging with laser scanning confocal microscope to show that TRPV4 is expressed in primary vascular endothelial cells and that shear stress sensitises the response of TRPV4 to its agonist, GSK1016790A. The sensitisation was attributed to the recruitment of intracellular pools of TRPV4 to the plasma membrane, through the clathrin and dynamin-mediated exocytosis. The translocation was dependent on ILK/Akt signalling pathway, release of Ca2+ from intracellular stores and we demonstrated that shear stress stimulated phosphorylation of TRPV4 at tyrosine Y110. Our findings implicate calcium-sensitive TRPV4 translocation in the regulation of endothelial responses to mechanical stimulation. Keywords TRPV4 Endothelium Shear stress Translocation Ca2+ Mechanotransduction
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.