Mono(2-ethylhexyl)phthalate accumulation disturbs energy metabolism of fat cells
详细信息    查看全文
  • 作者:Huai-chih Chiang ; Ya-Ting Kuo ; Chih-Che Shen ; Yi-Hua Lin…
  • 关键词:Phthalates ; MEHP ; Adipocytes ; Glucose uptake ; Lipolysis ; Mitochondria
  • 刊名:Archives of Toxicology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:90
  • 期:3
  • 页码:589-601
  • 全文大小:3,385 KB
  • 参考文献:ATSDR (Agency for Toxic Substances and Disease Registry) (2002) Toxicological profile for di(2-ethylhexyl)phthalate. Atlanta, GA
    Becker K, Goen T, Seiwert M et al (2009) GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health 212(6):685–692. doi:10.​1016/​j.​ijheh.​2009.​08.​002 CrossRef PubMed
    Brenmoehl J, Hoeflich A (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13(6):755–761. doi:10.​1016/​j.​mito.​2013.​04.​002 CrossRef PubMed
    Campioli E, Batarseh A, Li J, Papadopoulos V (2011) The endocrine disruptor mono-(2-ethylhexyl) phthalate affects the differentiation of human liposarcoma cells (SW 872). PLoS ONE 6(12):e28750. doi:10.​1371/​journal.​pone.​0028750 PubMedCentral CrossRef PubMed
    Cao H, Sekiya M, Ertunc ME et al (2013) Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 17(5):768–778. doi:10.​1016/​j.​cmet.​2013.​04.​012 PubMedCentral CrossRef PubMed
    Ducluzeau PH, Fletcher LM, Vidal H, Laville M, Tavare JM (2002) Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab 28(2):85–92PubMed
    Durmaz E, Ozmert EN, Erkekoglu P et al (2010) Plasma phthalate levels in pubertal gynecomastia. Pediatrics 125(1):e122–e129. doi:10.​1542/​peds.​2009-0724 CrossRef PubMed
    Ellero-Simatos S, Claus SP, Benelli C et al (2011) Combined transcriptomic-(1)H NMR metabonomic study reveals that monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes. J Proteome Res 10(12):5493–5502. doi:10.​1021/​pr200765v PubMedCentral CrossRef PubMed
    Fasshauer M, Klein J, Ueki K et al (2000) Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes. J Biol Chem 275(33):25494–25501. doi:10.​1074/​jbc.​M004046200 CrossRef PubMed
    FDA (Food and Drug Administration) (2001) Safety assessment of di(2-ethylhexyl)phthalate (DEHP) released from PVC medical devices. Rockville
    Feige JN, Gelman L, Rossi D et al (2007) The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem 282(26):19152–19166CrossRef PubMed
    Feige JN, Gerber A, Casals-Casas C et al (2010) The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARalpha-dependent mechanisms. Environ Health Perspect 118(2):234–241. doi:10.​1289/​ehp.​0901217 PubMedCentral CrossRef PubMed
    Gerhart-Hines Z, Dominy JE Jr, Blattler SM et al (2011) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell 44(6):851–863. doi:10.​1016/​j.​molcel.​2011.​12.​005 PubMedCentral CrossRef PubMed
    Grahn TH, Kaur R, Yin J et al (2014) Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J Biol Chem 289(17):12029–12039. doi:10.​1074/​jbc.​M113.​539890 PubMedCentral CrossRef PubMed
    Greenberg AS, Coleman RA, Kraemer FB et al (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Investig 121(6):2102–2110. doi:10.​1172/​JCI46069 PubMedCentral CrossRef PubMed
    Hao C, Cheng X, Guo J, Xia H, Ma X (2013) Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Frontiers in bioscience 5:725–733
    Hsu HF, Tsou TC, Chao HR, Kuo YT, Tsai FY, Yeh SC (2010a) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells. J Hazard Mater 182(1–3):649–655. doi:10.​1016/​j.​jhazmat.​2010.​06.​081 CrossRef PubMed
    Hsu HF, Tsou TC, Chao HR et al (2010b) Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome. Toxicol Appl Pharmacol 245(3):370–377. doi:10.​1016/​j.​taap.​2010.​04.​008 CrossRef PubMed
    Kajimura S, Seale P, Spiegelman BM (2010) Transcriptional control of brown fat development. Cell Metab 11(4):257–262. doi:10.​1016/​j.​cmet.​2010.​03.​005 PubMedCentral CrossRef PubMed
    Koch HM, Christensen KL, Harth V, Lorber M, Bruning T (2012) Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch Toxicol 86(12):1829–1839. doi:10.​1007/​s00204-012-0908-1 CrossRef PubMed
    Lass A, Zimmermann R, Oberer M, Zechner R (2011) Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50(1):14–27. doi:10.​1016/​j.​plipres.​2010.​10.​004 PubMedCentral CrossRef PubMed
    Lind PM, Roos V, Ronn M et al (2012) Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ Health Global Access Sci Source 11:21. doi:10.​1186/​1476-069X-11-21
    Miki H, Yamauchi T, Suzuki R et al (2001) Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 21(7):2521–2532. doi:10.​1128/​MCB.​21.​7.​2521-2532.​2001 PubMedCentral CrossRef PubMed
    Miura Y, Naito M, Ablake M et al (2007) Short-term effects of di-(2-ethylhexyl) phthalate on testes, liver, kidneys and pancreas in mice. Asian J Androl 9(2):199–205. doi:10.​1111/​j.​1745-7262.​2007.​00220.​x CrossRef PubMed
    Miyoshi H, Perfield JW 2nd, Souza SC et al (2007) Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 282(2):996–1002. doi:10.​1074/​jbc.​M605770200 CrossRef PubMed
    Miyoshi H, Perfield JW 2nd, Obin MS, Greenberg AS (2008) Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105(6):1430–1436. doi:10.​1002/​jcb.​21964 PubMedCentral CrossRef PubMed
    Mori T, Sakaue H, Iguchi H et al (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280(13):12867–12875. doi:10.​1074/​jbc.​M410515200 CrossRef PubMed
    Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130(12):3122S–3126SPubMed
    Nurjhan N, Consoli A, Gerich J (1992) Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J Clin Investig 89(1):169–175. doi:10.​1172/​JCI115558 PubMedCentral CrossRef PubMed
    Park BO, Ahrends R, Teruel MN (2012) Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep 2(4):976–990. doi:10.​1016/​j.​celrep.​2012.​08.​038 CrossRef PubMed
    Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N (2012) Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ Health Perspect 120(9):1243–1251. doi:10.​1289/​ehp.​1205056 PubMedCentral CrossRef PubMed
    Prosdocimo DA, Anand P, Liao X et al (2014) Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem 289(9):5914–5924. doi:10.​1074/​jbc.​M113.​531384 PubMedCentral CrossRef PubMed
    Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS ONE 6(7):e22931. doi:10.​1371/​journal.​pone.​0022931 PubMedCentral CrossRef PubMed
    Rhind SM, Kyle CE, Telfer G, Duff EI, Smith A (2005) Alkyl phenols and diethylhexyl phthalate in tissues of sheep grazing pastures fertilized with sewage sludge or inorganic fertilizer. Environ Health Perspect 113(4):447–453PubMedCentral CrossRef PubMed
    Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171. doi:10.​1146/​annurev.​cellbio.​16.​1.​145 CrossRef PubMed
    Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853. doi:10.​1038/​nature05483 PubMedCentral CrossRef PubMed
    Rozo AV, Vijayvargia R, Weiss HR, Ruan H (2008) Silencing Jnk1 and Jnk2 accelerates basal lipolysis and promotes fatty acid re-esterification in mouse adipocytes. Diabetologia 51(8):1493–1504. doi:10.​1007/​s00125-008-1036-6 CrossRef PubMed
    Shelby MD (2006) NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP). Ntp Cerhr Mon 18:v, vii-7, II–iii–xiii passim
    Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH (2007) Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect 115(6):876–882. doi:10.​1289/​ehp.​9882 PubMedCentral CrossRef PubMed
    Su PH, Chang YZ, Chang HP et al (2012) Exposure to di(2-ethylhexyl) phthalate in premature neonates in a neonatal intensive care unit in Taiwan. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 13(6):671–677. doi:10.​1097/​PCC.​0b013e3182455558​
    Weuve J, Sanchez BN, Calafat AM et al (2006) Exposure to phthalates in neonatal intensive care unit infants: urinary concentrations of monoesters and oxidative metabolites. Environ Health Perspect 114(9):1424–1431PubMedCentral CrossRef PubMed
    Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Investig 114(9):1281–1289. doi:10.​1172/​JCI21752 PubMedCentral CrossRef PubMed
    Zeng Q, Wei C, Wu Y et al (2013) Approach to distribution and accumulation of dibutyl phthalate in rats by immunoassay. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 56:18–27. doi:10.​1016/​j.​fct.​2013.​01.​045 CrossRef
    Zhang YH, Chen BH, Zheng LX, Wu XY (2003) Study on the level of phthalates in human biological samples. Zhonghua yu fang yi xue za zhi [Chin J Prevent Med] 37(6):429–434
  • 作者单位:Huai-chih Chiang (1)
    Ya-Ting Kuo (1)
    Chih-Che Shen (1)
    Yi-Hua Lin (1)
    Shu-Li Wang (1)
    Tsui-Chun Tsou (1)

    1. Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 350, Taiwan
  • 刊物主题:Pharmacology/Toxicology; Occupational Medicine/Industrial Medicine; Environmental Health; Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0738
文摘
Phthalates are lipophilic and tend to accumulate in adipose tissue, an important regulator of energy balance and glucose homeostasis. The study aimed to determine whether cellular phthalate accumulation influenced fat cell energy metabolism. Following a 3-day treatment with adipogenesis-inducing medium and a 2-day treatment with adipogenesis-maintaining medium, 3T3-L1 cells differentiated into adipocytes in the presence of a phthalate at a clinically relevant concentration (30–300 μM) for another 6 days. Two phthalates, di(2-ethylhexyl)phthalate and di-n-butylphthalate, and their metabolites, mono(2-ethylhexyl)phthalate (MEHP) and mono-n-butylphthalate, were used here. The phthalate treatments caused no marked effect on cytotoxicity and adipogenesis. Only the MEHP-treated adipocytes were found having smaller lipid droplets; MEHP accumulated in cells in a dose- and time-dependent manner. The MEHP-treated adipocytes exhibited significant increases in lipolysis and glucose uptake; quantitative real-time polymerase chain reaction (qPCR) analysis revealed correlated changes in expression of marker genes involved in adipogenesis, lipid metabolism, and glucose uptake. Analysis of oxygen consumption rate (a mitochondrial respiration indicator) and extracellular acidification rate (a glycolysis indicator) indicated a higher energy metabolism in the adipocytes. qPCR analysis of critical genes involved in mitochondrial biogenesis and/or energy metabolism showed that expression of peroxisome proliferator-activated receptor γ coactivator-1α, sirtuin 3, and protein kinase A were significantly enhanced in the MEHP-treated adipocytes. In vitro evidence of MEHP impacts on lipolysis, glucose uptake/glycolysis, and mitochondrial respiration/biogenesis demonstrates that MEHP accumulation disturbs energy metabolism of fat cells.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.