The Tensile Mechanical Properties of Thermomechanically Consolidated Titanium at Different Strain Rates
详细信息    查看全文
  • 作者:Cun Liang ; Mingxing Ma ; Mingtu Jia…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:46
  • 期:11
  • 页码:5095-5102
  • 全文大小:2,727 KB
  • 参考文献:1.P.G. Esteban, L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo: Rev. Metal., 2011, vol. 47, pp.169-88.CrossRef
    2.Q. Ma: Int. J. Powder Metall., 2010, vol. 46, pp.29-44.
    3.F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, and V.A. Duz: JOM, 2004, vol. 56, pp. 46-48.CrossRef
    4.F.H. Froes, M.N. Gungor, and M.A. Imam: JOM, 2007, vol. 59, pp. 28-31.CrossRef
    5.H. Wang, M. Lefler, Z.Z. Fang, T. Lei, S. Fang, J. Zhang, and Q. Zhao: Key Eng. Mater., 2010, vol. 436, pp.157-63.CrossRef
    6.G. Abakumov, V. Duz, O. Ivasishirr, V. Moxson, and D. Savvakin: Ti 2011 - Proceedings of the 12th World Conference on Titanium. 2011. vol. 2, pp. 1639-3.
    7.L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo: Mater. Des., 2014, vol. 60, pp.226-32.CrossRef
    8.B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, and P. Ramakrishnan: Mater. Sci. Eng. A, 2005, vol. 396, pp. 255-62.CrossRef
    9.B.B. Panigrahi: Mater. Lett., 2007, vol. 61, pp. 152-55.CrossRef
    10.R.J. Low, I.M. Robertson, and G.B. Schaffer: Scripta Mater., 2007, vol. 56, pp. 895-98.CrossRef
    11.D.F. Khan, H. Yin, H. Li, X. Qu, M. Khan, S. Ali, and M.Z. Iqbal: Mater. Des., 2013, vol. 50, pp. 479-83.CrossRef
    12.D.P. Delo, and H.R. Piehler: Acta Mater., 1999, vol. 47, pp. 2841-52.CrossRef
    13.Z.L. Zhao, H.Z. Guo, Z.K. Yao, Z.F. Shi, X.N. Peng, and C. Qin: J. Mater. Process. Tech., 2012, vol. 212, pp. 1495-500.CrossRef
    14.V.N. Nadakuduru, D.L. Zhang, S. Raynova, P. Cao, and B. Gabbitas: Adv. Mater. Res., 2011, vol. 275, pp.186-91.CrossRef
    15.D.L. Zhang, S. Raynova, V. Nadakuduru, P. Cao, B. Gabbitas, and B. Robinson: Adv. Mater. Res., 2009, vol. 618-619, pp.513-16.CrossRef
    16.S. Raynova, D. Zhang and B. Gabbitas: Key Eng. Mater., 2012, vol. 520, pp. 289-294.CrossRef
    17.F. Yang, D.L. Zhang, B. Gabbitas, H.Y. Lu, and C.F. Wang: Mater. Sci. Eng. A, 2014, vol. 598, pp. 360-67.CrossRef
    18.L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang: Mater. Design, 2012, vol. 34, pp. 179-184.CrossRef
    19.J. Peng, C.Y. Zhou, Q. Dai, X.H. He, Z.X. Tang, and Y.Q. Du: Rare Metal Mat. Eng., 2013, vol. 42, pp. 483-87.
    20.G. Purcek, G.G. Yapici, I. Karaman, H.J. Maier: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2303-08.CrossRef
    21.T.H. Courtney: Mechanical Behaviour of Materials, McGraw-Hill Publishing Company, New York, 1990, pp. 16.
    22.M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175-93.CrossRef
    23.T.H. Courtney: Mechanical Behaviour of Materials, McGraw-Hill Publishing Company, New York, 1990, pp. 13.
    24.A.V. Sergueevaa, V.V. Stolyarovb, R.Z. Valievb, and A.K. Mukherjee: Scripta Mater., 2001, vol. 45, pp. 747-52.CrossRef
    25.V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59-67.CrossRef
    26.V.S. Zhernakov, V.V. Latysh, V.V. Stolyarov, A.I. Zharikov, and R.Z. Valiev: Scripta Mater., 2001, vol. 44, pp. 1771-74.CrossRef
    27.M.T. Jia: Ph.D. Thesis, The University of Waikato, Hamilton, 2013.
    28.D.L. Zhang, C.C. Koch, and R.O. Scattergood: Mater. Sci. Eng. A, 2009, vol. 516, pp. 270-75.CrossRef
  • 作者单位:Cun Liang (1)
    Mingxing Ma (1) (3)
    Mingtu Jia (2)
    Stiliana Raynova (2)
    Jianqiang Yan (1)
    Deliang Zhang (1)

    1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
    3. Central China Institute of Technology, Zhengzhou, China
    2. Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton, New Zealand
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
文摘
The microstructures, tensile mechanical properties, and fracture behavior of a commercially pure (CP) titanium disk (called PF/Ti disk) and a CP titanium bar (called PE/Ti bar) made by powder compact forging (PCF) and powder compact extrusion (PCE) respectively have been studied. With increasing the strain rate from 10? to 10? s?, the yield strength of the PF/Ti disk and PE/Ti bar increased from 708 to 811 MPa and from 672 to 764 MPa, respectively; their UTS increased from 824 to 1009 MPa and from 809 to 926 MPa, respectively, and their elongation to fracture decreased from 21 to 8 pct and from 25 to 17.8 pct, respectively. With a low strain rate of 10? s?, the PF/Ti disk did not show any cavities at unbonded or weakly bonded interparticle boundaries, but the PE/Ti bar showed a small number of cavities with sizes of around 1 μm. With a high strain rate of 10? s?, the PF/Ti disk showed a small number of cavities with sizes in the range of 0.1 to 0.5 μm, while for the PE/Ti bar, the cavities grew into microcracks of up to 20 μm long. The findings suggest that close to 100 pct of consolidation is rapidly achieved by PCF at 1573 K (1300 °C) and PCE at 1523 K (1250 °C), respectively, possibly due to the dissolution of the particle oxide surface films during heating and rapid diffusion bonding between the fresh particle surfaces during PCF and PCE. Manuscript submitted November 15, 2014.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.