MicroRNA profiling of the whitefly Bemisia tabaci Middle East-Aisa Minor I following the acquisition of Tomato yellow leaf curl China virus
详细信息    查看全文
  • 作者:Bi Wang ; Lanlan Wang ; Fangyuan Chen ; Xiuling Yang ; Ming Ding…
  • 关键词:Tomato yellow leaf curl China virus ; Whitefly Bemisia tabaci ; Gene silencing machinery ; Differentially regulated miRNA profiling
  • 刊名:Virology Journal
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 全文大小:3,005 KB
  • 参考文献:1.Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in transgenic plant. Plant Cell. 1990;2:279–89.PubMedCentral CrossRef PubMed
    2.Cogoni C, Macino G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci U S A. 1997;94:10233–8.PubMedCentral CrossRef PubMed
    3.Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.CrossRef PubMed
    4.Cai XZ, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66.PubMedCentral CrossRef PubMed
    5.Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.PubMedCentral CrossRef PubMed
    6.Llave C, Xie ZX, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002;297:2053–6.CrossRef PubMed
    7.Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16:1616–26.PubMedCentral CrossRef PubMed
    8.Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRef PubMed
    9.Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.CrossRef PubMed
    10.Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006;103:4034–9.PubMedCentral CrossRef PubMed
    11.Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA. 2007;13:1198–204.PubMedCentral CrossRef PubMed
    12.Nakamoto M, Jin P, O’Donnell WT, Warren ST. Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet. 2005;14:3813–21.CrossRef PubMed
    13.Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature. 2007;450:219–32.PubMedCentral CrossRef PubMed
    14.Seal SE, vandenBosch F, Jeger MJ. Factors influencing begomovirus evolution and their increasing global significance: Implications for sustainable control. Crit Rev Plant Sci. 2006;25:23–46.CrossRef
    15.Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol. 2008;46:327–59.CrossRef PubMed
    16.Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol. 2011;49:219–48.CrossRef PubMed
    17.De Barro PJ, Liu SS, Boykin LM, Dinsdale AB. Bemisia tabaci: A statement of species status. Annu Rev Entomol. 2011;56:1–19.CrossRef PubMed
    18.Hu J, De Barro PJ, Zhao H, Wang J, Nardi F, Liu SS. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One. 2011;6:e16061.PubMedCentral CrossRef PubMed
    19.Firdaus S, Vosman B, Hidayati N, Supena EDJ, Visser RGF, van Heusden AM. The Bemisia tabaci species complex: additions from different parts of the world. Insect Sci. 2013;20:723–33.CrossRef PubMed
    20.Liu SS, Colvin J, De Barro PJ. Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J Integr Agric. 2012;11:176–86.CrossRef
    21.Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro PJ. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am. 2010;103:196–208.CrossRef
    22.Polston JE, De Barro PJ, Boykin LM. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manage Sci. 2014;70:1547–52.CrossRef
    23.Boykin LM, De Barro PJ. A practical guide to identifying members of the Bemisia tabaci species complex: and other morphologically identical species. Front Ecol Evol. 2014;2:45.CrossRef
    24.Brown JK, Frohlich DR, Rosell RC. The sweetpotato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol. 1995;40:511–34.CrossRef
    25.Boykin LM, Shatters RG, Rosell RC, Mckenzie CL, Bagnall RA, De Barro PJ, et al. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol. 2007;44:1306–19.CrossRef PubMed
    26.Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science. 2007;318:1769–72.CrossRef PubMed
    27.Czosnek H, Ghanim M, Ghanim M. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci-insights from studies with Tomato yellow leaf curl virus. Ann Appl Biol. 2002;140:215–31.CrossRef
    28.Zhou X, Xie Y, Tao X, Zhang Z, Li Z, Fauquet CM. Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol. 2003;84:237–47.CrossRef PubMed
    29.Colvin J, Omongo CA, Govindappa MR, Stevenson PC, Maruthi MN, Gibson G, et al. Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Adv Virus Res. 2006;67:419–52.CrossRef PubMed
    30.Jiu M, Zhou XP, Tong L, Xu J, Yang X, Wan FH, et al. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS One. 2007;2:e182.PubMedCentral CrossRef PubMed
    31.Zhou XP. Advances in understanding begomovirus satellites. Annu Rev Phytopathol. 2013;51:357–81.CrossRef PubMed
    32.Cui XF, Tao XR, Xie Y, Fauquet CM, Zhou XP. A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol. 2004;7:13966–74.CrossRef
    33.Ghanim M, Kontsedalov S, Czosnek H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol. 2007;37:732–8.CrossRef PubMed
    34.Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochem Mol Biol. 2013;43:740–6.CrossRef PubMed
    35.Upadhyay SK, Dixit S, Sharma S, Singh H, Kumar J, Verma PC, et al. siRNA machinery in whitefly (Bemisia tabaci). PLoS One. 2013;8:e83692.PubMedCentral CrossRef PubMed
    36.Sinisterra XH, McKenzie CL, Hunter WB, Powell CA, Shatters RG. Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). J Gen Virol. 2005;86:1525–32.CrossRef PubMed
    37.Luan JB, Varela NL, Wang YL, Li FF, Bao YY, Zhang CX, et al. Global analysis of the transcriptional response of whitefly to Tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol. 2011;85:3330–40.PubMedCentral CrossRef PubMed
    38.Li T, Wu R, Zhang Y, Zhu D. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics. 2011;12:1660–71.
    39.Guo Q, Tao YL, Chu D. Characterization and comparative profiling of miRNAs in invasive Bemisia tabaci (Gennadius) B and Q. PLoS One. 2013;8:e59884.PubMedCentral CrossRef PubMed
    40.Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.CrossRef PubMed
    41.Scott RC, Juhász G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007;17:1–11.PubMedCentral CrossRef PubMed
    42.Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 2011;30:1977–89.PubMedCentral CrossRef PubMed
    43.Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, et al. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol. 2009;183:1617–24.PubMedCentral CrossRef PubMed
    44.Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, et al. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci U S A. 2009;106:3507–12.PubMedCentral CrossRef PubMed
    45.Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.PubMedCentral CrossRef PubMed
    46.Wang XW, Luan JB, Li JM, Su YL, Xia J, Liu SS. Transcriptome analysis and comparison reveal divergence between two invasive whitefly cryptic species. BMC Genomics. 2011;12:458–69.PubMedCentral CrossRef PubMed
    47.Jiang ZF, Xia F, Johnson KW, Bartom E, Tuteja JH, Stevens R, et al. Genome sequences of the primary endosymbiont “Candidatus Portiera aleyrodidarum” in the whitefly Bemisia tabaci B and Q Biotypes. J Bacteriol. 2012;194:6678–9.PubMedCentral CrossRef PubMed
    48.Zhang CR, Shan HW, Xiao N, Zhang FD, Wang XW, Liu YQ, et al. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments. Sci Rep. 2015;5:15898.PubMedCentral CrossRef PubMed
    49.Shan HW, Zhang CR, Yan TT, Tang HW, Wang XW, Liu SS, et al. Temporal changes of symbiont density and host fitness after rifampicin treatment in a whitefly of the Bemisia tabaci species complex. Insect Sci. doi:10.1111/1744-7917.12276.
    50.Hofacker IL, Stadler PF. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics. 2006;22:1172–6.CrossRef PubMed
    51.Luan JB, Wang XW, Colvin J, Liu SS. Plant-mediated whitefly-begomovirus interactions: research progress and future prospects. Bull Entomol Res. 2014;104:267–76.CrossRef PubMed
    52.De Barro PJ, Driver F. Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Aust J Entomol. 1997;36:149–52.CrossRef
    53.Liu J, Li M, Li JM, Huang CJ, Zhou XP, Xu FC, et al. Viral infection of tobacco plants improves performance of Bemisia tabaci but more so for an invasive than for an indigenous biotype of the whitefly. J Zhejiang Univ Sci B. 2010;11:30–40.PubMedCentral CrossRef PubMed
    54.Qian YJ, Zhou XP. Pathogenicity and stability of a truncated DNAβ associated with Tomato yellow leaf curl China virus. Virus Res. 2005;109:159–63.CrossRef PubMed
    55.Jiu M, Zhou XP, Liu SS. Acquisition and transmission of two begomoviruses by the B and a non-B biotype of Bemisia tabaci from Zhejiang, China. J Phytopathol. 2006;154:587–91.CrossRef
    56.Li M, Hu J, Xu FC, Liu SS. Transmission of Tomato yellow leaf curl virus by two invasive biotypes and a Chinese indigenous biotype of the whitefly Bemisia tabaci. Int J Pest Manage. 2010;56:275–80.CrossRef
    57.Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell. 2008;133:116–27.PubMedCentral CrossRef PubMed
    58.Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, et al. Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One. 2011;6:e16928.PubMedCentral CrossRef PubMed
    59.Qi X, Bao FS, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One. 2009;4:e4971.PubMedCentral CrossRef PubMed
    60.Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005;39:519–25.CrossRef PubMed
    61.Winer J, Jung CK, Shackel I, Williams PM. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem. 1999;270:41–9.CrossRef PubMed
    62.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT Method. Methods. 2001;25:402–8.CrossRef PubMed
  • 作者单位:Bi Wang (1) (2)
    Lanlan Wang (3)
    Fangyuan Chen (1)
    Xiuling Yang (1) (2)
    Ming Ding (4)
    Zhongkai Zhang (4)
    Shu-Sheng Liu (3)
    Xiao-Wei Wang (3)
    Xueping Zhou (1) (2)

    1. State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People’s Republic of China
    2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People’s Republic of China
    3. Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
    4. Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, People’s Republic of China
  • 刊物主题:Virology;
  • 出版者:BioMed Central
  • ISSN:1743-422X
文摘
Background The begomoviruses are the largest and most economically important group of plant viruses exclusively vectored by whitefly (Bemisia tabaci) in a circulative, persistent manner. During this process, begomoviruses and whitefly vectors have developed close relationships and complex interactions. However, the molecular mechanisms underlying these interactions remain largely unknown, and the microRNA profiles for viruliferous and nonviruliferous whiteflies have not been studied.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.