Refinement of the time-space evolution of the giant Mio-Pliocene Río Blanco-Los Bronces porphyry Cu–Mo cluster, Central Chile: new U–Pb (SHRIMP II) and Re–Os geochronology and 40Ar/39Ar
详细信息    查看全文
  • 作者:Katja Deckart (1)
    Alan H. Clark (2)
    Patricio Cuadra (3)
    Mark Fanning (4)
  • 关键词:Río Blanco ; Los Bronces ; Porphyry copper deposits ; U–Pb ; Re–Os ; 40Ar/39Ar geochronology ; Central Andes ; Chile
  • 刊名:Mineralium Deposita
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:48
  • 期:1
  • 页码:57-79
  • 全文大小:1907KB
  • 参考文献:1. Bertens A, Deckart K, Gonzalez A (2003) Geocronología U–Pb, Re–Os, y 40Ar/39Ar del pórfido Cu–Mo Los Pelambres, Chile Central. X. Congreso Geológico Chileno, Concepción, 2003 (CD-ROM): 5
    2. Cannell J, Cooke DR, Walshe JL, Stein H (2005) Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu–Mo deposit. Econ Geol 100:979-003 CrossRef
    3. Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Mu?oz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33-6° S.L.). J S Am Earth Sci 15:117-39 CrossRef
    4. Chesley JT (1999) Integrative geochronology of ore deposits: New insights into the duration and timing of hydrothermal circulation. In: Lambert DD, Ruiz J (eds) Application of radiogenic isotopes to ore deposit research and exploration. Rev Econ Geol 12: 115-41
    5. Clark AH (1993) Are outsize porphyry copper deposits either anatomically or environmentally distinct? In: Whiting BH, Hodgson CJ, Mason R (eds) Giant ore deposits. Soc Econ Geol Spec Publ 2: 213-83
    6. Creaser RA, Erdmer P, Stevens RA, Grant SL (1993) Tectonic affinity of Nisutlin and Anvil assemblage strata from the Teslin Tectonic Zone, northern Canadian Cordillera: constraints from neodymium isotope and geochemical evidence. Tectonics 16:107-21 CrossRef
    7. Deckart K, Clark AH, Aguilar C, Vargas R, Bertens A, Mortensen J, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Río Blanco porphyry copper deposit, Central Chile: implications of an integrated U–Pb and 40Ar-sup class="a-plus-plus">39Ar database. Econ Geol 100:905-34 CrossRef
    8. Deckart K, Godoy E, Bertens A, Jeréz D, Saeed A (2010) Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: geochemistry and Nd–Hf and U–Pb isotope systematics. Andean Geol 37:1-1
    9. Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit—a 6-km vertical reconstruction. Econ Geol 87:1963-001 CrossRef
    10. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259-74 CrossRef
    11. Frikken PH, Cooke DR, Walshe JL, Archibald D, Skarmeta J, Serrano L, Vargas R (2005) Mineralogical and isotopic zonation in the Sur-Sur tourmaline breccia, Río Blanco-Los Bronces Cu–Mo deposit, Chile—implications for ore genesis. Econ Geol 100:935-61 CrossRef
    12. Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857-12 CrossRef
    13. Gustafson LB, Quiroga J (1995) Patterns of mineralization and alteration below the porphyry copper orebody at E1 Salvador, Chile. Econ Geol 90:2-6 CrossRef
    14. Harrison TM, McDougall I (1982) The thermal significance of potassium feldspar K–Ar ages inferred from 40Ar/39Ar age spectrum results. Geochim Cosmochim Acta 46:1811-820 CrossRef
    15. Kay SM, Mpodozis C (2001) Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. Geol Soc Am (GSA) Today 11(3):4-
    16. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117:67-8 CrossRef
    17. Le Roux JP, Gomez CA, Olivares DM, Middleton H (2005) Determining the Neogene behavior of the Nazca plate by geohistory analysis. Geology 33:165-68 CrossRef
    18. Le Roux JP, Olivares DM, Nielsen SN, Smith ND, Middleton H, Fenner F, Ishman SE (2006) Bay sedimentation as controlled by regional crustal behaviour, local tectonics and eustatic sea-level changes: Coquimbo Formation (Miocene–Pliocene), Bay of Tongoy, central Chile. Sed Geol 184:133-53 CrossRef
    19. Ludwig KR (1999) User’s manual for Isoplot/Ex, Version 2.10, A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center. Spec Publ 1a
    20. Ludwig KR (2000) SQUID 1.00, A user’s manual. Berkeley Geochronology Center, Spec Publ 2.
    21. Maksaev V, Munizaga F, McWilliams M, Mathur R, Ruiz J, Zentilli M (2004) New chronology for El Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission-track dating: Implications for the evolution of a supergiant porphyry Cu–Mo deposit. Soc Econ Geol Spec Publ 11:15-4
    22. Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu–Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ Geol 100:835-62 CrossRef
    23. Mathur R, Ruiz JR, Munizaga FM (2001) Insights into Andean metallogenesis from the perspective of Re–Os analyses of sulphides. South American Isotope Conference, (CD-ROM). SERNAGEOMIN, Chile, p 4
    24. Mining Journal (2009) Anglo unveils major new deposits. Exploration & Development. The Mining Industry’s Weekly Newspaper Online 07/08/2009: p 3
    25. N?gler T, Frei R (1997) ‘Plug-in-Os distillation. Schweiz Mineral Petrogr Mitt 77:123-27
    26. Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1?Ga Midcontinent Rift System. J Geophys Res 98:13,997-4,013 CrossRef
    27. Quirt GS (1972) A potassium-argon geochronological investigation of the Andean mobile belt of north-central Chile. Unpublished Ph.D. thesis, Queens' University, Kingston, Ontario, Canada, 240 pp
    28. Quirt GS, Clark AH, Farrar E, Sillitoe RH (1971) Potassium-argon ages of porphyry copper deposits in northern and central Chile. Econ Geol 67:980-81
    29. Rivano S, Godoy E, Vergara M, Villarroel R (1990) Redefinición de la Formación Farellones en la Cordillera de los Andes de Chile Central (32-4° S). Rev Geol Chile 17(2):205-14
    30. Serrano L, Vargas R, Stambuk V, Aguilar C, Galeb M, Holmgren C, Contreras A, Godoy S, Vela L, Skewes MA, Stern CR (1996) The Late Miocene to early Pliocene Río Blanco-Los Bronces copper deposit, central Chilean Andes. In: Camus F, Sillitoe RH, Petersen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geol, Spec Publ 5: 119-30
    31. Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chem 67:2136-141 CrossRef
    32. Skewes MA, Stern CR (1994) Tectonic trigger for the formation of Late Miocene Cu-rich breccias pipes in the Andes of central Chile. Geology 22:551-54 CrossRef
    33. Skewes MA, Arévalo A, Floody R, Zú?iga H, Stern CR (2002) The giant El Teniente breccia deposit: hypogene copper distribution and emplacement. Soc Econ Geol Spec Publ 9:299-32
    34. Skewes MA, Arévalo A, Floody R, Zú?giga P, Stern CR (2005) The El Teniente megabreccia deposit, the world’s largest copper deposit. In: Porter TM (ed) Super porphyry copper & gold deposits—a global perspective. PGC Publishing, Adelaide, Australia, pp 83-14
    35. Steiger RH, J?ger E (1977) Subcomission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359-62 CrossRef
    36. Stern CR, Skewes MA (2005) Origin of giant Miocene and Pliocene Cu–Mo deposits in central Chile: role of ridge subduction, decreased subduction angle, subduction erosion, crustal thickening and long-lived, batholith sized, open-system magma chambers. In: Porter TM (ed) Super porphyry copper & gold deposits—a global perspective. PGC Publishing, Adelaide, Australia, pp 65-2
    37. Suzuki K, Shimizu H, Masuda A (1996) Re–Os dating of molybdenites from ore deposits in Japan; implication for closure temperature of Re–Os system for molybdenite and cooling history of molybdenum ore deposits. Geochim Cosmochim Acta 60:3151-159 CrossRef
    38. Tera F, Wasserburg GJ (1972) U-Th-Pb systematic in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281-04 CrossRef
    39. Warnaars FW, Holmgrem C, Barassi S (1985) Porphyry copper and tourmaline breccias at Los Bronces-Río Blanco, Chile. Econ Geol 80:1544-565
    40. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7: 1-5
    41. Ya?ez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger–Juan Fernández–Maipo major tectonic transition of the Nazca–Andean subduction system at 33-4°: geodynamic evidence and implications. J S Am Earth Sci 15:23-8 CrossRef
  • 作者单位:Katja Deckart (1)
    Alan H. Clark (2)
    Patricio Cuadra (3)
    Mark Fanning (4)

    1. Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Casilla 12518, Santiago, Chile
    2. Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada
    3. Corporación Nacional del Cobre de Chile, Divisíon Andina, Sta. Teresa 513, Los Andes, Chile
    4. Research School of Earth Sciences, Australian National University, Canberra, ACT, 0200, Australia
  • ISSN:1432-1866
文摘
Representing one of the largest known (estimated >5 Gt at 1?% Cu and 0.02?% Mo) porphyry system, the Río Blanco-Los Bronces deposit incorporates at least five hypabyssal intrusive and hydrothermal centres, extending for about 5?km from the Río Blanco and Los Bronces mines in the north, through the Don Luis mine, to the Sur Sur mine, La Americana and Los Sulfatos in the south. The new geochronology data, which now include data on different molybdenite vein types, confirm the U–Pb ages of the pre-mineralisation intrusions but slightly increase their age range from 8.8 to 8.2?Ma. The distinct magmatic pulses of the mineralisation-associated porphyritic intrusives (Late Porphyries) indicate an age interval instead of the previously suggested individual ages: the quartz monzonite porphyry ranges from 7.7 to 6.1?Ma (Sur Sur 5.74?±-.13?Ma), the feldspar porphyry shows an interval from 5.8 to 5.2?Ma and the Don Luis porphyry from 5.2 to 5.0?Ma. The new Re–Os data on distinct molybdenite vein types confirm the protracted history of Cu(–Mo) mineralisation, inferred previously. The vein development occurred at least from 5.94 to 4.50?Ma, indicating a time-span of 1.5?Ma for the hydrothermal activity. Hydrothermal minerals dated by the 40Ar/39Ar method are generally too young to record the age of early, high-temperature mineralisation. The majority of the 40Ar/39Ar data in the Río Blanco porphyry cluster record reheating by either the youngest member of the Late Porphyry suite or the post-mineralisation dacite or rhyolite plug formations at around 4.9-.7?Ma.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.