Preparation and performance study of LiFePO4 and xLiFePO4·yLi3V2(PO
详细信息    查看全文
  • 作者:Zhongcai Shao ; Jili Xia ; Xinqing Liu ; Guangyu Li
  • 关键词:LiFePO4/C ; xLiFePO4·yLi3V2(PO4)3 ; Carbon sources ; Coating ; Composite ratio ; Electrochemical performance
  • 刊名:Research on Chemical Intermediates
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:42
  • 期:5
  • 页码:4121-4133
  • 全文大小:1,373 KB
  • 参考文献:1.D. Rajesh, V.S. Naik, C.S. Sunandana, Synthesis and characterization of LiFePO4 cathode preparation by low temperature method. Phys. B 464, 57–60 (2015)CrossRef
    2.M. Kuzmanovic, D. Jugovic, M. Mitric, B. Jokic, N. Cvjeticanin, D. Uskokovic, The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite. Ceram. Int. 41, 6753–6758 (2015)CrossRef
    3.V. Nuria, H. Marta, C.J. Daniel, P.V. Carlos, L.T. Jose, A. Shahzada, G.B. Germa, LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim. Acta 163, 323–329 (2015)CrossRef
    4.D. Zhao, Y.L. Feng, Y.G. Wang, Y.Y. Xia, Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim. Acta 88, 632–638 (2013)CrossRef
    5.M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004)CrossRef
    6.P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion. 148, 45–51 (2002)CrossRef
    7.M.M. Doeff, J.D. Wilcox, R. Kostecki, G. Laua, Optimization of carbon coatings on LiFePO4. J. Power Sources 163, 180–184 (2006)CrossRef
    8.D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim. Acta 50, 2955–2958 (2005)CrossRef
    9.A.Y. Shenouda, H.K. Liub, Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 477, 498–503 (2009)CrossRef
    10.M. Gaberscek, R. Dominko, J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9, 2778–2783 (2007)CrossRef
    11.K. Zaghib, N. Ravet, M. Gauthier, F. Gendron, A. Mauger, J.B. Goodenough, C.M. Julien, Optimized electrochemical performance of LiFePO4 at 60 °C with purity controlled by SQUID magnetometry. J. Power Sources 163, 560–566 (2006)CrossRef
    12.C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Size effects on carbon-free LiFePO4 powders. Electrochem. Solid State Lett. 9, A352–A355 (2006)CrossRef
    13.K. Dong-Han, K. Jaekook, Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006)CrossRef
    14.A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid microwave-solvothermal synthesis of phosphor-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem. Commun. 10, 903–906 (2008)CrossRef
    15.X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21, 2710–2714 (2009)CrossRef
    16.S.W. Oh, S.T. Myung, S.M. Oh, K.H. Oh, K. Amine, B. Scrosati, Y.K. Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Mater. 22, 4842–4845 (2010)CrossRef
    17.Y. Xing, Y.B. He, B. Li, X. Chu, H. Chen, J. Ma, H. Du, F. Kang, LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochim. Acta 109, 512–518 (2013)CrossRef
    18.S.M. Oh, Y.K. Sun, Improving the electrochemical performance of LiMn0.85Fe0.15PO4–LiFePO4 core-shell materials based on an investigation of carbon source effect. J. Power Sources 244, 663–667 (2013)CrossRef
    19.M. Molenda, M. Swietoslawski, A. Milewska, Carbon nanocoatings for C/LiFePO4 composite cathode. Solid State Ion. 251, 47–50 (2013)CrossRef
    20.K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran, Z. Shao, Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta 54, 2861–2868 (2009)CrossRef
    21.G.R. Hu, X.G. Gao, Z.D. Penh, K. Du, Y.J. Liu, Synthetic LiFePO4/C without using inert gas. Chin. Chem. Lett. 18, 337–340 (2007)CrossRef
    22.S. Liu, H. Fang, E. Dai, B. Yang, Y. Yao, W. Ma, Y. Dai, Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim. Acta 116, 97–102 (2014)CrossRef
    23.S. Liu, H. Wang, H. Yin, H. Wang, J. He, Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites. J. Nanosci. Nanotechnol. 14, 2408–2413 (2014)CrossRef
    24.K. Zaghib, K. Kinoshita, Advanced materials for negative electrodes in Li-polymer batteries. J. Power Sources 125, 214–220 (2004)CrossRef
  • 作者单位:Zhongcai Shao (1)
    Jili Xia (1)
    Xinqing Liu (1)
    Guangyu Li (1)

    1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
文摘
LiFePO4/C and xLiFePO4·yLi3V2(PO4)3 composites were successfully prepared by the high-temperature carbon thermal reduction method using LiOH·H2O, Fe2O3, NH4H2PO4, five different compounds (citric acid, polyaniline, carboxymethyl cellulose, E-44 epoxy resin, and tartaric acid), and V2O5 as raw materials. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), laser particle size analysis, specific surface area measurements, and electrochemical performance testing were used to study their structure, morphology, and electrochemical properties. The results showed that the LiFePO4/C materials exhibited significantly different polymerization degree, XRD spectra, specific surface area, and particle size distribution. Finally, 9LiFePO4·Li3V2(PO4)3 and LiFePO4/C coated using tartaric acid were shown to exhibit improved electrochemical performance.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.