Reduced complexity of intracranial pressure observed in short time series of intracranial hypertension following traumatic brain injury in adults
详细信息    查看全文
  • 作者:Martin Soehle (1)
    Bernadette Gies (1)
    Peter Smielewski (2)
    Marek Czosnyka (2)
  • 关键词:Intracranial pressure ; Traumatic brain injury ; Detrended fluctuation analysis ; Scaling exponent ; Sample entropy ; Multiscale entropy
  • 刊名:Journal of Clinical Monitoring and Computing
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:27
  • 期:4
  • 页码:395-403
  • 全文大小:478KB
  • 参考文献:1. Beaumont A, Marmarou A. Response of the brain to physical injury. In: Crockard A, Hayward R, Hoff JT, editors. Neurosurgery—The scientific basis of clinical practice, vol. 1. 3rd ed. Oxford: Blackwell Science Ltd; 2000. p. 460-8.
    2. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75(6):813-1. CrossRef
    3. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63(6):721-1. CrossRef
    4. Marmarou A, Shulman K, Rosende RM. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg. 1978;48(3):332-4. CrossRef
    5. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40(4):543-1.
    6. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99(Suppl 1):2466-2. CrossRef
    7. Rich MW, Saini JS, Kleiger RE, Carney RM, teVelde A, Freedland KE. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol. 1988;62:714-. CrossRef
    8. Tuininga YS, van Veldhuisen DJ, Brouwer J, Haaksma J, Crijns HJ, Man in’t Veld AJ, Lie KI. Heart rate variability in left ventricular dysfunction and heart failure: effects and implications of drug treatment. Br Heart J. 1994;72:509-3. CrossRef
    9. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, Webb-Peploe K, Harrington D, Banasiak W, Wrabec K. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1997;79:1645-0. CrossRef
    10. Soehle M, Czosnyka M, Chatfield DA, Hoeft A, Pena A. Variability and fractal analysis of middle cerebral artery blood flow velocity and arterial blood pressure in subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2008;28(1):64-3. CrossRef
    11. Lu CW, Czosnyka M, Shieh JS, Smielewska A, Pickard JD, Smielewski P. Complexity of intracranial pressure correlates with outcome after traumatic brain injury. Brain. 2012;135(8):2399-08.
    12. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, Bancalari E, Aschner JL, Whit Walker M, Perez JA, Palmer C, Stukenborg GJ, Lake DE, Michael O’Shea T. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159(6):900-. CrossRef
    13. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278:H2039-9.
    14. Seeley AJE, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8:R367-4. CrossRef
    15. Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A. 1983;28:2591-. CrossRef
    16. Eke A, Herman P, Kocsis L, Kozak LR. Fractal characterization of complexity in temporal physiological signals. Physiol Meas. 2002;23:R1-8. CrossRef
    17. Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, Ikrenyi C. Physiological time series: distinguishing fractal noises from motions. Eur J Physiol. 2000;439:403-5. CrossRef
    18. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82-. CrossRef
    19. Hornero R, Aboy M, Abasolo D, McNames J, Wakeland W, Goldstein B. Complex analysis of intracranial hypertension using approximate entropy. Crit Care Med. 2006;34(1):87-5. CrossRef
    20. Ommaya AK, Goldsmith W, Thibault L. Biomechanics and neuropathology of adult and paediatric head injury. Br J Neurosurg. 2002;16(3):220-2. CrossRef
    21. Menon DK. Cerebral protection in severe brain injury: physiological determinants of outcome and their optimisation. Br Med Bull. 1999;55(1):226-8. CrossRef
    22. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215-0. CrossRef
    23. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E. 1994;49:1685-. CrossRef
    24. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88:2297-01. CrossRef
    25. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol. 2002;283:R789-7.
    26. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102. CrossRef
    27. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E: Stat, Nonlin, Soft Matter Phys. 2005;71(2 Pt 1):021906. CrossRef
    28. Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82(4):1256-9.
    29. Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, Pickard JD. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10. CrossRef
    30. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11-. discussion 17-9. CrossRef
    31. Chandra FA, Buzi G, Doyle JC. Glycolytic oscillations and limits on robust efficiency. Science. 2011;333(6039):187-2. CrossRef
    32. Burr RL, Kirkness CJ, Mitchell PH. Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury. IEEE Trans Biomed Eng. 2008;55(11):2509-8. CrossRef
    33. Taqqu MS, Teverovsky V, Willinger W. Estimators for long-range dependence: an empirical study. Fractals. 1995;3:785-8. CrossRef
    34. Bryce RM, Sprague KB. Revisiting detrended fluctuation analysis. Sci Rep. 2012;2:315. CrossRef
    35. Lake DE, Moorman JR. Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am J Physiol Heart Circ Physiol. 2011;300(1):H319-5. CrossRef
    36. Angelini L, Maestri R, Marinazzo D, Nitti L, Pellicoro M, Pinna GD, Stramaglia S, Tupputi SA. Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series. Artif Intell Med. 2007;41(3):237-0. CrossRef
    37. Stadnitski T. Measuring fractality. Front Physiol. 2012;3:127. CrossRef
  • 作者单位:Martin Soehle (1)
    Bernadette Gies (1)
    Peter Smielewski (2)
    Marek Czosnyka (2)

    1. Department of Anaesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
    2. Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
  • ISSN:1573-2614
文摘
Physiological parameters, such as intracranial pressure (ICP), are regulated by interconnected feedback loops, resulting in a complex time course. According to the decomplexification theory, disease is characterised by a loss of feedback loops resulting in a reduced complexity of the time course of physiological parameters. We hypothesized that complexity of the ICP time series is decreased during periods of intracranial hypertension (IHT) following adult traumatic brain injury. In an observational retrospective cohort study, ICP was continuously monitored using intraparenchymally implanted probes and stored using ICM?+?-software. Periods of IHT (ICP?>?25?mmHg for at least 1,024?s), were compared with preceding periods of intracranial normotension (ICP?<?20?mmHg) and analysed at 1?s-intervals. ICP data (length?=?1,024?s) were normalised (mean?=?0, SD?=?1) and complexity was estimated using the scaling exponent α (as derived from detrended fluctuation analysis), sample entropy (SampEn, m?=?1, r?=?0.2?×?SD) and multiscale entropy. 344 episodes were analysed in 22 patients. During IHT (ICP?=?31.7?±?7.8?mmHg, mean?±?SD), α was significantly elevated (α?=?1.02?±?0.22, p?<?0.001) and SampEn significantly reduced (SampEn?=?1.45?±?0.46, p?=?0.004) as compared to before IHT (ICP?=?15.7?±?3.2?mmHg, α?=?0.81?±?0.14, SampEn?=?1.81?±?0.24). In addition, MSE revealed a significantly (p?<?0.05) decreased entropy at scaling factors ranging from 1 to 10. Both the increase in α as well as the decrease in SampEn and MSE indicate a loss of ICP complexity. Therefore following traumatic brain injury, periods of IHT seem to be characterised by a decreased complexity of the ICP waveform.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.