Promoting Autophagic Clearance: Viable Therapeutic Targets in Alzheimer’s Disease
详细信息    查看全文
  • 作者:Lauren G. Friedman ; Yasir H. Qureshi ; Wai Haung Yu
  • 关键词:Autophagy ; Alzheimer’s disease ; Neurodegeneration ; Therapeutics ; Tau ; Amyloid (Aβ) ; Flux ; Lysosomes
  • 刊名:Neurotherapeutics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:12
  • 期:1
  • 页码:94-108
  • 全文大小:721 KB
  • 参考文献:1. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003;278:25009-25013.
    2. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002;11:1107-1117.
    3. Verhoef LG, Lindsten K, Masucci MG, Dantuma NP. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 2002;11:2689-2700.
    4. Lee JH, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010;141:1146-1158.
    5. Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008;118:2190-2199.
    6. Zhu XC, Yu JT, Jiang T, Tan L. Autophagy modulation for Alzheimer's disease therapy. Mol Neurobiol 2013;48:702-714.
    7. Eskelinen EL. Maturation of autophagic vacuoles in Mammalian cells. Autophagy 2005;1:1-10.
    8. Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem 2004;263:55-72.
    9. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069-1075.
    10. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290:1717-1721.
    11. Araki Y, Ku WC, Akioka M, et al. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol 2013;203:299-313.
    12. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009;335:1-32.
    13. Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007;6:1837-1849.
    14. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005;433:477-480.
    15. Hannan KM, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 2003;23:8862-8877.
    16. Peng T, Golub TR, Sabatini DM. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 2002;22:5575-5584.
    17. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998;273:3963-3966.
    18. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014;15:155-162.
    19. Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009;20:1981-1991.
    20. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009;284:12297-12305.
    21. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009;20:1992-2003.
    22. Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS One 2010;5:e15394.
    23. Egan D, Kim J, Shaw RJ, Guan KL. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011;7:643-644.
    24. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13:132-141.
    25. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011;334:678-683.
    26. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577-590.
    27. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-226.
    28. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167-1174.
    29. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007;67:10804-10812.
    30. Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010;11:390-401.
    31. Ben Sahra I, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 2011;71:4366-4372.
    32. Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynami
  • 刊物主题:Neurosciences; Neurology; Neurosurgery; Neurobiology;
  • 出版者:Springer US
  • ISSN:1878-7479
文摘
Many neurodegenerative disorders are characterized by the aberrant accumulation of aggregate-prone proteins. Alzheimer’s disease (AD) is associated with the buildup of β-amyloid peptides and tau, which aggregate into extracellular plaques and neurofibrillary tangles, respectively. Multiple studies have linked dysfunctional intracellular degradation mechanisms with AD pathogenesis. One such pathway is the autophagy–lysosomal system, which involves the delivery of large protein aggregates/inclusions and organelles to lysosomes through the formation, trafficking, and degradation of double-membrane structures known as autophagosomes. Converging data suggest that promoting autophagic degradation, either by inducing autophagosome formation or enhancing lysosomal digestion, provides viable therapeutic strategies. In this review, we discuss compounds that can augment autophagic clearance and may ameliorate disease-related pathology in cell and mouse models of AD. Canonical autophagy induction is associated with multiple signaling cascades; on the one hand, the best characterized is mammalian target of rapamycin (mTOR). Accordingly, multiple mTOR-dependent and mTOR-independent drugs that stimulate autophagy have been tested in preclinical models. On the other hand, there is a growing list of drugs that can enhance the later stages of autophagic flux by stabilizing microtubule-mediated trafficking, promoting lysosomal fusion, or bolstering lysosomal enzyme function. Although altering the different stages of autophagy provides many potential targets for AD therapeutic interventions, it is important to consider how autophagy drugs might also disturb the delicate balance between autophagosome formation and lysosomal degradation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.