A 1,3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push-pull motif
详细信息    查看全文
  • 作者:Aijian Wang (1) (2)
    Wang Yu (1)
    Zhengguo Xiao (3)
    Yinglin Song (3)
    Lingliang Long (1)
    Marie P. Cifuentes (4)
    Mark G. Humphrey (4)
    Chi Zhang (1) (2) (4)

    1. China-Australia Joint Research Center for Functional Molecular Materials
    ; School of Chemical and Material Engineering ; Jiangnan University ; Wuxi ; 214122 ; China
    2. China-Australia Joint Research Center for Functional Molecular Materials
    ; Scientific Research Academy ; Jiangsu University ; Zhenjiang ; 212013 ; China
    3. School of Physical Science and Technology
    ; Soochow University ; Suzhou ; 215006 ; China
    4. Research School of Chemistry
    ; Australian National University ; Canberra ; ACT 0200 ; Australia
  • 关键词:porphyrin ; cycloaddition ; reduced graphene oxide ; nonlinear optics
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:3
  • 页码:870-886
  • 全文大小:2,739 KB
  • 参考文献:1. Meyer, J C, Geim, A K, Katsnelson, M I, Novoselov, K S, Booth, T J, Roth, S (2007) The structure of suspended graphene sheets. Nature 446: pp. 60-63 CrossRef
    2. Novoselov, K S, Geim, A K, Morozov, S V, Jiang, D, Zhang, Y, Dubonos, S V, Grigorieva, I V, Firsov, A A (2004) Electric field effect in atomically thin carbon films. Science 306: pp. 666-669 CrossRef
    3. Xu, Y X, Lin, Z Y, Huang, X Q, Liu, Y, Huang, Y, Duan, X F (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7: pp. 4042-4049 CrossRef
    4. Georgakilas, V, Otyepka, M, Bourlinos, A B, Chandra, V, Kim, N, Kemp, K C, Hobza, P, Zboril, R, Kim, K S (2012) Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112: pp. 6156-6214 CrossRef
    5. Zhang, X, Hou, L, Cnossen, A, Coleman, A C, Ivashenko, O, Rudolf, P, Wees, B J, Browne, W R, Feringa, B L (2011) One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem.-Eur. J. 17: pp. 8957-8964 CrossRef
    6. Chua, C K, Pumera, M (2013) Covalent chemistry on graphene. Chem. Soc. Rev. 42: pp. 3222-3233 CrossRef
    7. Ragoussi, M E, Casado, S, Ribeiro-Viana, R, Torre, G, Rojo, J, Torres, T (2013) Selective carbohydrate-lectin interactions in covalent graphene- and SWCNT-based molecular recognition systems. Chem. Sci. 4: pp. 4035-4041 CrossRef
    8. Wu, Q, Xu, Y X, Yao, Z Y, Liu, A R, Shi, G Q (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4: pp. 1963-1970 CrossRef
    9. Xu, Y X, Zhao, L, Bai, H, Hong, W J, Li, C, Shi, G Q (2009) Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 131: pp. 13490-13497 CrossRef
    10. Li, Y X, Zhu, J H, Chen, Y, Zhang, J J, Wang, J, Zhang, B, He, Y, Blau, W J (2011) Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine. Nanotechnology 22: pp. 205704 CrossRef
    11. Westervelt, R M (2008) Graphene nanoelectronics. Science 320: pp. 324-325 CrossRef
    12. Chen, W, Chen, S, Qi, D C, Gao, X Y, Wee, A T S (2007) Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 129: pp. 10418-10422 CrossRef
    13. Arnold, D P, Worthington, E I, Sakata, Y, Sugiura, K (1998) meso-畏1-Metalloporphyrins: Preparation of palladioand platinioporphyrins and the crystal structure of 5-[bromo-1,2-bis(diphenylphosphino)ethanepalladio(II)]-10,20-diphenylporphyrin. Chem. Commun.. pp. 2331-2332
    14. Merhi, A, Drouet, S, Kerisit, N, Paul-Roth, C O (2013) Linear porphyrin dimers with fluorenyl arms linked by an ethynyl bridge. Tetrahedron 69: pp. 7112-7124 CrossRef
    15. Saito, S, Osuka, A (2011) Expanded porphyrins: Intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 50: pp. 4342-4373 CrossRef
    16. Esdaile, L J, Jensen, P, McMurtrie, J C, Arnold, D P (2007) Azoporphyrin: The porphyrin analogue of azobenzene. Angew. Chem. Int. Ed. 46: pp. 2090-2093 CrossRef
    17. Guldi, D M, Rahman, G M A, Sgobba, V, Ehli, C (2006) Multifunctional molecular carbon materials鈥攆rom fullerenes to carbon nanotubes. Chem. Soc. Rev. 35: pp. 471-487 CrossRef
    18. Wang, A J, Fang, Y, Long, L L, Song, Y L, Yu, W, Zhao, W, Cifuentes, M P, Humphrey, M G, Zhang, C (2013) Facile synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes. Chem.-Eur. J. 19: pp. 14159-14170 CrossRef
    19. Wang, A J, Fang, Y, Yu, W, Long, L L, Song, Y L, Zhao, W, Cifuentes, M P, Humphrey, M G, Zhang, C (2014) Allyloxyporphyrin-functionalized multiwalled carbon nanotubes: Synthesis by radical polymerization and enhanced optical-limiting properties. Chem.-Asian J. 9: pp. 639-648 CrossRef
    20. Zhu, J H, Li, Y X, Chen, Y, Wang, J, Zhang, B, Zhang, J J, Blau, W J (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49: pp. 1900-1905 CrossRef
    21. Liu, Y S, Zhou, J Y, Zhang, X L, Liu, Z B, Wan, X J, Tian, J G, Wang, T, Chen, Y S (2009) Synthesis, characterization and optical limiting property of covalently oligothiophenefunctionalized graphene material. Carbon 47: pp. 3113-3121 CrossRef
    22. Nalla, V, Polavarapu, L, Manga, K K, Goh, B M, Loh, K P, Xu, Q H, Ji, W (2010) Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite. Nanotechnology 21: pp. 415203 CrossRef
    23. Wang, A J, Long, L L, Zhao, W, Song, Y L, Humphrey, M G, Cifuentes, M P, Wu, X Z, Fu, Y S, Zhang, D D, Li, X F (2013) Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 53: pp. 327-338 CrossRef
    24. Kamat, P V (2011) Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2: pp. 242-251 CrossRef
    25. Zhang, B, Chen, Y, Liu, G, Xu, L Q, Chen, J N, Zhu, C X, Neoh, K G, Kang, E T (2012) Push-pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. J. Polym. Sci., A: Polym. Chem. 50: pp. 378-387 CrossRef
    26. Zhou, Y, Bao, Q L, Tang, L A L, Zhong, Y L, Loh, K P (2009) Hydrothermal dehydration for the 鈥済reen鈥?reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21: pp. 2950-2956 CrossRef
    27. Li, P P, Chen, Y, Zhu, J H, Feng, M, Zhuang, X D, Lin, Y, Zhan, H B (2011) Charm-bracelet-type poly(N-vinylcarbazole) functionalized with reduced graphene oxide for broadband optical limiting. Chem.-Eur. J. 17: pp. 780-785 CrossRef
    28. Maggini, M, Scorrano, G, Prato, M (1993) Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115: pp. 9798-9799 CrossRef
    29. Georgakilas, V, Kordatos, K, Prato, M, Guldi, D M, Holzinger, M, Hirsch, A (2002) Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124: pp. 760-761 CrossRef
    30. Ballesteros, B, Torre, G, Ehli, C, Rahman, G M A, Agullo-Rueda, F, Guldi, D M, Torres, T (2007) Single-wall carbon nanotubes bearing covalently linked phthalocyanines鈥攑hotoinduced electron transfer. J. Am. Chem. Soc. 129: pp. 5061-5068 CrossRef
    31. Dreyer, D R, Park, S, Bielawski, C W, Ruoff, R S (2010) The chemistry of graphene oxide. Chem. Soc. Rev. 39: pp. 228-240 CrossRef
    32. Segura, J L, Martin, N, Guldi, D M (2005) Materials for organic solar cells: The C60/蟺-conjugated oligomer approach. Chem. Soc. Rev. 34: pp. 31-47 CrossRef
    33. Cao, Y, Houk, K N (2011) Computational assessment of 1,3-dipolar cycloadditions to graphene. J. Mater. Chem. 21: pp. 1503-1508 CrossRef
    34. Ou, B, Zhou, Z, Liu, Q, Liao, B, Yi, S, Ou, Y, Zhang, X, Li, D (2012) Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature. Polym. Chem. 3: pp. 2768-2775 CrossRef
    35. Quintana, M, Spyrou, K, Grzelczak, M, Browne, W R, Rudolf, P, Prato, M (2010) Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4: pp. 3527-3533 CrossRef
    36. Quintana, M, Vazquez, E, Prato, M (2013) Organic functionalization of graphene in dispersions. Acc. Chem. Res. 46: pp. 138-148 CrossRef
    37. Quintana, M, Montellano, A, Castillo, A E D R, Tendeloo, G V, Bittencourt, C, Prato, M (2011) Selective organic functionalization of graphene bulk or graphene edges. Chem. Commun. 47: pp. 9330-9332 CrossRef
    38. Castelain, M, Martinez, G, Merino, P, Martin-Gago, J A, Segura, J L, Ellis, G, Salavagione, H J (2012) Graphene functionalisation with a conjugated poly(fluorene) by click coupling: Striking electronic properties in solution. Chem. -Eur. J. 18: pp. 4965-4973 CrossRef
    39. Liu, Z B, Guo, Z, Zhang, X L, Zheng, J Y, Tian, J G (2013) Increased optical nonlinearities of multi-walled carbon nanotubes covalently functionalized with porphyrin. Carbon 51: pp. 419-426 CrossRef
    40. Balapanuru, J, Yang, J X, Xiao, S, Bao, Q L, Jahan, M, Polavarapu, L, Wei, J, Xu, Q H, Loh, K P (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem. Int. Ed. 49: pp. 6549-6553 CrossRef
    41. Li, Z, Chen, Y J, Du, Y K, Wang, X M, Yang, P, Zheng, J W (2012) Triphenylamine-functionalized graphene decorated with Pt nanoparticles and its application in photocatalytic hydrogen production. Int. J. Hydrogen Energy 37: pp. 4880-4888 CrossRef
    42. Fan, W Q, Lai, Q H, Zhang, Q H, Wang, Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C 115: pp. 10694-10701 CrossRef
    43. Stankovich, S, Dikin, D A, Piner, R D, Kohlhaas, K A, Kleinhammes, A, Jia, Y Y, Wu, Y, Nguyen, S T, Ruoff, R S (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45: pp. 1558-1565 CrossRef
    44. Georgakilas, V, Bourlinos, A B, Zboril, R, Steriotis, T A, Dallas, P, Stubos, A K, Trapalis, C (2010) Organic functionalisation of graphenes. Chem. Commun. 46: pp. 1766-1768 CrossRef
    45. Gong, F, Xu, X, Zhou, G, Wang, Z S (2013) Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dyesensitized solar cells. Phys. Chem. Chem. Phys. 15: pp. 546-552 CrossRef
    46. Hsiao, M C, Liao, S H, Yen, M Y, Liu, P I, Pu, N W, Wang, C A, Ma, C C M (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl. Mater. Inter. 2: pp. 3092-3099 CrossRef
    47. Jeong, H K, Lee, Y P, Lahaye, R J W E, Park, M H, An, K H, Kim, I J, Yang, C W, Park, C Y, Ruoff, R S, Lee, Y H (2008) Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130: pp. 1362-1366 CrossRef
    48. Bourlinos, A B, Gournis, D, Petridis, D, Szab贸, T, D茅k谩ny, I (2003) Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Lamgmuir 19: pp. 6050-6055 CrossRef
    49. Han, Y Q, Lu, Y (2007) Preparation and characterization of graphite oxide/polypyrrole composites. Carbon 45: pp. 2394-2399 CrossRef
    50. Guo, C X, Yang, H B, Sheng, Z M, Lu, Z S, Song, Q L, Li, C M (2010) Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49: pp. 3014-3017 CrossRef
    51. Shen, J F, Li, N, Shi, M, Hu, Y Z, Ye, M X (2010) Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid. Interf. Sci. 348: pp. 377-383 CrossRef
    52. Stankovich, S, Piner, R D, Nguyen, S T, Ruoff, R S (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44: pp. 3342-3347 CrossRef
    53. Chang, C M, Liu, Y L (2009) Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through Diels-Alder cycloaddition. Carbon 47: pp. 3041-3049 CrossRef
    54. Yang, K, Gu, M Y, Guo, Y P, Pan, X F, Mu, G H (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47: pp. 1723-1737 CrossRef
    55. Shao, H Z, Shi, Z X, Fang, J H, Yin, J (2009) One pot synthesis of multiwalled carbon nanotubes reinforced polybenzimidazole hybrids: Preparation, characterization and properties. Polymer 50: pp. 5987-5995 CrossRef
    56. Wei, W, He, T C, Teng, X, Wu, S X, Ma, L, Zhang, H, Ma, J, Yang, Y H, Chen, H Y, Han, Y, Sun, H D, Huang, L (2012) Nanocomposites of graphene oxide and upconversion rareearth nanocrystals with superior optical limiting performance. Small 8: pp. 2271-2276 CrossRef
    57. Shao, P, Li, Y J, Sun, W F (2008) Cyclometalated platinum(II) complex with strong and broadband nonlinear optical response. J. Phys. Chem. A 112: pp. 1172-1179 CrossRef
    58. Su, X Y, Guang, S Y, Li, C W, Xu, H Y, Liu, X Y, Wang, X, Song, Y L (2010) Molecular hybrid optical limiting materials from polyhedral oligomer silsequioxane: Preparation and relationship between molecular structure and properties. Macromolecules 43: pp. 2840-2845 CrossRef
    59. Hou, H W, Song, Y L, Xu, H, Wei, Y L, Fan, Y T, Zhu, Y, Li, L K, Du, C X (2003) Polymeric complexes with 鈥減iperazine-pyridine鈥?building blocks: Synthesis, network structures, and third-order nonlinear optical properties. Macromolecules 36: pp. 999-1008 CrossRef
    60. Wang, J, Blau, W J (2008) Solvent effect on optical limiting properties of single-walled carbon nanotube dispersions. J. Phys. Chem. C 112: pp. 2298-2303 CrossRef
    61. Filidou, V, Chatzikyriakos, G, Lliopoulos, K, Couris, S, Bonifazi, D (2010) The effect of charge transfer on the NLO response of some porphyrin [60]fullerene dyads. AIP Conf. Proc. 1288: pp. 188-191 CrossRef
    62. Argouarch, G, Veillard, R, Roisnel, T, Amar, A, Meghezzi, H, Boucekkine, A, Hugues, V, Mongin, O, Blanchard-Desce, M, Paul, F (2012) Triaryl-1,3,5-triazinane-2,4,6-triones(isocyanurates) peripherally functionalized by donor groups: Synthesis and study of their linear and nonlinear optical properties. Chem.-Eur. J. 18: pp. 11811-11827 CrossRef
    63. Liu, Z B, Wang, Y, Zhang, X L, Xu, Y F, Chen, Y S, Tian, J G (2009) Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94: pp. 021902 CrossRef
    64. Krishna, M B M, Venkatramaiah, N, Venkatesan, R, Rao, D N (2011) Nonlinear optical properties of graphene (OH, Sn) porphyrin composites in picosecond regime. AIP Conf. Proc. 1391: pp. 680-682 CrossRef
    65. Wang, J, Hernandez, Y, Lotya, M, Coleman, J N, Blau, W J (2009) Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21: pp. 2430-2435 CrossRef
    66. Xu, X J, Chen, J, Luo, X L, Lu, J J, Zhou, H X, Wu, W B, Zhan, H B, Dong, Y Q, Yan, S K, Qin, J G (2012) Poly(9,9鈥?diheylfluorene carbazole) functionalized with reduced graphene oxide: Convenient synthesis using nitrogen-based nucleophiles and potential applications in optical limiting. Chem.-Eur. J. 18: pp. 14384-14391 CrossRef
    67. Kavitha, M K, John, H, Gopinath, P, Philip, R (2013) Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 1: pp. 3669-3676 CrossRef
    68. Anand, B, Kaniyoor, A, Sai, S S S, Philip, R, Ramaprabhu, S (2013) Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Mater. Chem. C 1: pp. 2773-2780 CrossRef
    69. Liu, Z B, Xu, Y F, Zhang, X Y, Zhang, X L, Chen, Y S, Tian, J G (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 113: pp. 9681-9686 CrossRef
    70. Liu, Z B, Tian, J G, Guo, Z, Ren, D M, Du, F, Zheng, J Y, Chen, Y S (2008) Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv. Mater. 20: pp. 511-515 CrossRef
    71. Li, P P, Niu, L J, Chen, Y, Wang, J, Liu, Y, Zhang, J J, Blau, W J (2011) In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes. Nanotechnology 22: pp. 015204 CrossRef
    72. D鈥橲ouza, F, Gadde, S, Zandler, M E, Arkady, K, El-Khouly, M E, Fujitsuka, M, Ito, O (2002) Studies on covalently linked porphyrin-C60 dyads: Stabilization of charge-separated states by axial coordination. J. Phys. Chem. A 106: pp. 12393-12404 CrossRef
    73. Bhyrappa, P, Krishnan, V (2004) Covalently linked bisporphyrins bearing tetraphenylporphyrin and perbromoporphyrin units: Synthesis and their properties. J. Chem. Sci. 116: pp. 71-78 CrossRef
    74. Shen, J F, Hu, Y Z, Li, C, Qin, C, Ye, M X (2009) Synthesis of amphiphilic graphene nanoplatelets. Small 5: pp. 82-85 CrossRef
    75. Yoon, Z S, Cho, D G, Kim, K S, Sessler, J L, Kim, D (2008) Nonlinear optical properties as a guide to aromaticity in congeneric pentapyrrolic expanded porphyrins: Pentaphyrin, sapphyrin, isosmaradyrin, and orangarin. J. Am. Chem. Soc. 130: pp. 6930-6931 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Reduced graphene oxide (RGO) has been covalently functionalized with porphyrin moieties by two methods: A straightforward Prato reaction (i.e. a 1,3-dipolar cycloaddition) with sarcosine and a formyl-containing porphyrin, and a stepwise method that involves a 1,3-dipolar cycloaddition to the RGO surface using 4-hydroxybenzaldehyde, followed by nucleophilic substitution with an appropriate porphyrin. The chemical bonding of porphyrins to the RGO surface has been confirmed by ultraviolet/visible absorption, fluorescence, Fourier-transform infrared, and Raman spectroscopies, X-ray powder diffraction and X-ray photoelectron spectroscopy, transmission electron and atomic force microscopy, and thermogravimetric analysis; this chemical attachment assures efficient electron/energy transfer between RGO and the porphyrin, and affords improved optical nonlinearities compared to those of the RGO precursor and the pristine porphyrin.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.