Injectable gellan gum-based nanoparticles-loaded system for the local delivery of vancomycin in osteomyelitis treatment
详细信息    查看全文
  • 作者:Urszula Posadowska ; Monika Brzychczy-Wloch…
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 全文大小:1,364 KB
  • 参考文献:1.Xie Z, Liu X, Jia W, Zhang C, Huang W, Wanq J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Control Release. 2009;139:118鈥?6.CrossRef
    2.Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs. 2000;59(6):1223鈥?2.CrossRef
    3.DiPiro JT, Talbert RL, Yee G, Matzke GR, Wells BG, Posey LM. Pharmacotherapy. 6th ed. New York: MCGRAW-HILL Medical Publishing Division; 2005.
    4.Han DP, Wisniewski SR, Wilson LA, Barza M, Vine AK, Doft BH, Kelsey SF. Spectrum and susceptibilities of microbiologic isolates in the endophthalmitis vitrectomy study. Am J Ophthalmol. 1996;122:1鈥?7.CrossRef
    5.Cui X, Zhao C, Gu Y, Li L, Wang H, Huang W, Zhou N, Wang D, Zhu Y, Xu J, Luo S, Zhang C, Rahaman MN. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. J Mater Sci Mater Med. 2014;25:733鈥?5. doi:10.鈥?007/鈥媠10856-013-5122-z .CrossRef
    6.Rao S, Kupfer Y, Pagala M, Chapnick E, Tessler S. Systemic absorption of oral vancomycin in patients with Clostridium difficile infection. Scand J Infect Dis. 2011;43(5):386鈥?. doi:10.鈥?109/鈥?0365548.鈥?010.鈥?44671 .CrossRef
    7.Loca D, Sokolova M, Locs J, Smirnova A, Irbe Z. Calcium phosphate bone cements for local vancomycin delivery. Mater Sci Eng C. 2015;49:106鈥?3. doi:10.鈥?016/鈥媕.鈥媘sec.鈥?014.鈥?2.鈥?75 .CrossRef
    8.Ordikhani F, Simchi A. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl Surf Sci. 2014;317:56鈥?6. doi:10.鈥?016/鈥媕.鈥媋psusc.鈥?014.鈥?7.鈥?97 .CrossRef
    9.Shinsako K, Okui Y, Matsuda Y, Kunimasa J, Otsuka M. Effects of bead size and polymerization in PMMA bone cement on vancomycin release. Biomed Mater Eng. 2008;18(6):377鈥?5. doi:10.鈥?233/鈥婤ME-2008-0554 .
    10.Li B, Brown KV, Wenke JC, Guelcher SA. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release. 2010;145(3):221鈥?0. doi:10.鈥?016/鈥媕.鈥媕conrel.鈥?010.鈥?4.鈥?02 .CrossRef
    11.Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, von Eiff Ch. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials. 2005;26(25):5251鈥?.CrossRef
    12.De Silva DA, Poole-Warren LA, Martens PJ, Panhuis M. Mechanical characteristics of swollen gellan gum hydrogels. Appl Polym Sci. 2013;130(5):3374鈥?3. doi:10.鈥?002/鈥媋pp.鈥?9583 .CrossRef
    13.Prezotti FG, Cury BSF, Evangelista RC. Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohyd Polym. 2014;113:286鈥?5. doi:10.鈥?016/鈥媕.鈥媍arbpol.鈥?014.鈥?7.鈥?21 .CrossRef
    14.Novac O, Lisa G, Profire L, Tuchilus C, Popa MI. Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Mater Sci Eng C Mater Biol Appl. 2014;35:291鈥?. doi:10.鈥?016/鈥媕.鈥媘sec.鈥?013.鈥?1.鈥?16 .CrossRef
    15.Gantar A, da Silva LP, Oliveira JM, Marques AP, Correlo VM, Novak S, Reis RL. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Mater Sci Eng C. 2014;43:27鈥?6. doi:10.鈥?016/鈥媕.鈥媘sec.鈥?014.鈥?6.鈥?45 .CrossRef
    16.Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5鈥?4.CrossRef
    17.Dobrzynski P, Kasperczyk J, Janeczek H, Bero M. Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerization of glycolide with L-Lactide initiated by Zr(Acac)4. Macromolecules. 2001;3(15):5090鈥?. doi:10.鈥?021/鈥媘a0018143 .CrossRef
    18.Anhalt JP. Assay of gentamicin in serum by high-pressure liquid chromatography. J Antimicrob Chemother. 1977;11(4):651鈥?.CrossRef
    19.Ghadiri M, Chrzanowski W, Lee WH, Dehghani F, Fathi A, Rohanizedeh R. Alginate/Clay (Laponite庐) composite with enhanced properties for biomedical applications. Appl Clay Sci. 2013;85:64鈥?3.CrossRef
    20.Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, Govender T, Xiong CD. An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int J Pharm. 2008;353:74鈥?7.CrossRef
    21.Zakeri-Milani P, Loveymi BD, Jelvehgari M, Valizadehe H. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces. 2013;103:174鈥?1. doi:10.鈥?016/鈥媕.鈥媍olsurfb.鈥?012.鈥?0.鈥?21 .CrossRef
    22.Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171鈥?5.CrossRef
    23.Lee SH, Lee JE, Baek WY, Lim JO. Regional delivery of vancomycin using pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo. J Control Release. 2004;96(1):1鈥?.CrossRef
    24.Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, Sen CK, Guan J. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 2010;6(6):1978鈥?1. doi:10.鈥?016/鈥媕.鈥媋ctbio.鈥?009 .CrossRef
    25.Okay O. General properties of hydrogels. In: Gerlach G, Arndt KF, editors. Hydrogel sensors and actuators. Engineering and Technology., Springer Series on Chemical SensorBerlin: Springer; 2010. p. 1鈥?4.
    26.PN EN ISO 7886-1 Sterile hypodermic syringes for single use鈥擯art 1: Syringes for manual use (ISO 7886-1:1993, including Technical Corrigendum 1:1995).
    27.Kim ZH, Lee Y, Kim SM, Kim H, Yun CK, Choi YS. A composite dermal filler comprising cross-linked hyaluronic acid and human collagen for tissue reconstruction. J Microbiol Biotechnol. 2015;25(3):399鈥?06.CrossRef
    28.Montufar EB, Maazouz Y, Ginebra MP. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013;9(4):6188鈥?8. doi:10.鈥?016/鈥媕.鈥媋ctbio.鈥?012 .CrossRef
    29.Posadowska U, Parizek M, Filova E, Wlodarczyk-Biegun M, Kamperman M, Bacakova L, Pamula E. Injectable nanoparticle-loaded gellan gum-based system for the local delivery of sodium alendronate. Int J Pharm. 2015;485(1鈥?):31鈥?0. doi:10.鈥?016/鈥媕.鈥媔jpharm.鈥?015.鈥?3.鈥?03 .CrossRef
    30.Blasi P, Schoubben A, Romano GV, Giovagnoli S, Di Michele A, Ricci M. Lipid nanoparticles for brain targeting II. Technological characterization. Colloids Surf B. 2013;110:130鈥?. doi:10.鈥?016/鈥媕.鈥媍olsurfb.鈥?013.鈥?4.鈥?21 .CrossRef
    31.Wang H, Hansen MB, Lowik DWPM, van Hest JCM, Li Y, Jansen JA, Leeuwenburgh SCG. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels. Adv Mater. 2011;23(12):119鈥?4. doi:10.鈥?002/鈥媋dma.鈥?01003908 .CrossRef
    32.Cui X, Gu Y, Li L, Wang H, Xie Z, Luo S, Zhou N, Huang W, Rahaman MN. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites. J Mater Sci Mater Med. 2013;24:2391鈥?03. doi:10.鈥?007/鈥媠10856-013-4996-0 .CrossRef
    33.Tafin-Kampe K, Kamus-Fogumen B. Acute osteomyelitis due to Staphylococcus aureus in children: what is the status of treatment today? Pediatr Infect Dis J. 2013;5(3):122鈥?. doi:10.鈥?016/鈥媕.鈥媝id.鈥?013.鈥?7.鈥?06 .CrossRef
    34.Dawes GJS, Fratila-Apachitei LE, Mulia K, Apachitei I, Witkamp GJ, Duszczyk J. Size effect of PLGA spheres on drug loading efficiency and release profiles. J Mater Sci Mater Med. 2009;20(5):1089鈥?4. doi:10.鈥?007/鈥媠10856-008-3666-0 .CrossRef
    35.Lee JH, Koa IH, Jeon S, Chae J, Chang J. Micro-structured hydroxyapatite microspheres for local delivery of alendronate and BMP-2 carriers. Mater Lett. 2013;105:136鈥?. doi:10.鈥?016/鈥媕.鈥媘atlet.鈥?013.鈥?4.鈥?82 .CrossRef
    36.Aderibigbe BA, Varaprasad K, Sadiku ER, Ray SS, Mbianda XY, Fotsing MC, Owonubi SJ, Agwuncha S. Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. Int J Biol Macromol. 2015;73:115鈥?3. doi:10.鈥?016/鈥媕.鈥媔jbiomac.鈥?014.鈥?0.鈥?64 .CrossRef
    37.Rousea MS, Steckelberga JM, Patel R. In vitro activity of ceftobiprole, daptomycin, linezolid, and vancomycin against methicillin-resistant staphylococci associated with endocarditis and bone and joint infection. Diagnost Microbiol Infect Dis. 2007;58(3):363鈥?. doi:10.鈥?016/鈥媕.鈥媎iagmicrobio.鈥?007.鈥?2.鈥?10 .CrossRef
  • 作者单位:Urszula Posadowska (1)
    Monika Brzychczy-Wloch (2)
    Elzbieta Pamula (1)

    1. Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059, Krakow, Poland
    2. Department of Microbiology, Medical College, Jagiellonian University, ul. Czysta 18, 31-121, Krakow, Poland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Characterization and Evaluation Materials
    Polymer Sciences
    Metallic Materials
    Ceramics,Glass,Composites,Natural Materials
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1573-4838
文摘
Infection spreading in the skeletal system leading to osteomyelitis can be prevented by the prolonged administration of antibiotics in high doses. However systemic antibiotherapy, besides its inconvenience and often low efficacy, provokes numerous side effects. Thus, we formulated a new injectable nanoparticle-loaded system for the local delivery of vancomycin (Vanc) applied in a minimally-invasive way. Vanc was encapsulated in poly(l-lactide-co-glycolide) nanoparticles (NPs) by double-emulsification. The size (258 卤 11 nm), polydispersity index (0.240 卤 0.003) and surface potential (鈭?5.9 卤 0.2 mV) of NPs were determined by dynamic light scattering and capillary electrophoresis measurements. They have a spherical morphology and a smooth topography as observed using atomic force microscopy. Vanc loading and encapsulation efficiencies were 8.8 卤 0.1 and 55.2 卤 0.5 %, respectively, based on fluorescence spectroscopy assays. In order to ensure injectability, NPs were suspended in gellan gum and cross-linked with Ca2+; also a portion of dissolved antibiotic was added to the system. The resulting system was found to be injectable (extrusion force 11.3 卤 1.1 N), reassembled its structure after breaking as shown by rheology tests and ensured required burst release followed by sustained Vanc delivery. The system was cytocompatible with osteoblast-like MG-63 cells (no significant impact on cells鈥?viability was detected). Growth of Staphylococcus spp. reference strains and also those isolated from osteomyelitic joints was inhibited in contact with the injectable system. As a result we obtained a biocompatible system displaying ease of application (low extrusion force), self-healing ability after disruption, adjustable drug release and antimicrobial properties.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.