Dynamic Models for Longitudinal Butterfly Data
详细信息    查看全文
  • 作者:Emily B. Dennis ; Byron J. T. Morgan…
  • 关键词:Abundance indices ; Auto ; regression ; Concentrated likelihood ; Generalised additive models ; Phenology ; Stopover models
  • 刊名:Journal of Agricultural, Biological, and Environmental Statistics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:1-21
  • 全文大小:808 KB
  • 参考文献:Altermatt, F. (2010), “Climatic warming increases voltinism in european butterflies and moths”, Proceedings of the Royal Society B: Biological Sciences, 277, 1281–1287.CrossRef
    Baur, B., Coray, A., Minoretti, N. and Zschokke, S. (2005), “Dispersal of the endangered flightless beetle Dorcadion fuliginator (Coleoptera: Cerambycidae) in spatially realistic landscapes”, Biological Conservation, 124, 49–61.CrossRef
    Botham, M. S., Brereton, T. M., Middlebrook, I., Randle, Z. and Roy, D. B. (2013), United Kingdom Butterfly Monitoring Scheme report for 2012. Centre for Ecology & Hydrology, Wallingford.
    Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995), “A limited memory algorithm for bound constrained optimization”, SIAM Journal on Scientific Computing, 16, 1190–1208.CrossRef MathSciNet MATH
    Calabrese, J. M. (2012), “How emergence and death assumptions affect count-based estimates of butterfly abundance and lifespan”, Population Ecology, 54, 431–442.CrossRef
    Dennis, E. B., Freeman, S. N., Brereton, T. and Roy, D. B. (2013), “Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern”, Methods in Ecology and Evolution, 4, 637–645.CrossRef
    Dennis, E. B., Morgan, B. J. T., Freeman, S. N., Brereton, T. and Roy, D. B. (2014), “A generalised abundance index for seasonal invertebrates”, Technical report. University of Kent. http://​kar.​kent.​ac.​uk/​id/​eprint/​48967 .
    Dennis, R. L. H. and Sparks, T. H. (2007), “Climate signals are reflected in an 89 year series of British Lepidoptera records”, European Journal of Entomology, 104, 763–767.CrossRef
    Diamond, S. E., Cayton, H., Wepprich, T., Jenkins, C. N., Dunn, R. R., Haddad, N. M. and Ries, L. (2014), “Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature”, Ecology, 95, 2613–2621.CrossRef
    Diamond, S. E., Frame, A. M., Martin, R. A. and Buckley, L. B. (2011), “Species’ traits predict phenological responses to climate change in butterflies”, Ecology, 92, 1005–1012.CrossRef
    Freeman, S. N. and Newson, S. E. (2008), “On a log-linear approach to detecting ecological interactions in monitored populations”, Ibis, 150, 250–258.CrossRef
    Grill, A., Cerny, A. and Fiedler, K. (2013), “Hot summers, long life: egg laying strategies of Maniola butterflies are affected by geographic provenance rather than adult diet”, Contributions to Zoology, 82, 27–36.
    Hindle, B. J., Kerr, C. L., Richards, S. A. and Willis, S. G. (2015), “Topographical variation reduces phenological mismatch between a butterfly and its nectar source”, Journal of Insect Conservation, 19, 227–236.CrossRef
    Hodgson, J. A., Thomas, C. D., Oliver, T. H., Anderson, B. J., Brereton, T. M. and Crone, E. E. (2011), “Predicting insect phenology across space and time”, Global Change Biology, 17, 1289–1300.CrossRef
    Isaac, N. J. B., Girardello, M., Brereton, T. M. and Roy, D. B. (2011), “Butterfly abundance in a warming climate: patterns in space and time are not congruent”, Journal of Insect Conservation, 15, 233–240.CrossRef
    Johnson, D. S., Conn, P., Hooten, M., Ray, J. and Pond, B. A. (2012), “Spatial occupancy models for large data sets”, Ecology, 94, 801–808.CrossRef
    Karlsson, B. (2014), “Extended season for northern butterflies”, International Journal of Biometeorology, 58, 691–701.CrossRef
    Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Daunt, F., Wanless, S. and Freeman, S. N. (2013), “Breeding together: modeling synchrony in productivity in a seabird community”, Ecology, 94, 3–10.CrossRef
    Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Wanless, S. and Freeman, S. N. (2011), “A capture–recapture model for exploring multi-species synchrony in survival”, Methods in Ecology and Evolution, 2, 116–124.CrossRef
    Matechou, E., Dennis, E. B., Freeman, S. N. and Brereton, T. (2014), “Monitoring abundance and phenology in (multivoltine) butterfly species: a novel mixture model”, Journal of Applied Ecology, 51, 766–775.CrossRef
    Nowicki, P., Bonelli, S., Barbero, F. and Balletto, E. (2009), “Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics”, Oecologia, 161, 227–239.CrossRef
    Pagel, J., Anderson, B. J., O’Hara, R. B., Cramer, W., Fox, R., Jeltsch, F., Roy, D. B., Thomas, C. D. and Schurr, F. M. (2014), “Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records”, Methods in Ecology and Evolution, 5, 751–760.CrossRef
    Parker, D. E., Legg, T. P. and Folland, C. K. (1992), “A new daily Central England Temperature series, 1772–1991”, International Journal of Climatology, 12, 317–342.CrossRef
    Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarrés, J. F., Araújo, M. B., Balvanera, P., Biggs, R., Cheung, W. W. et al. (2010), “Scenarios for global biodiversity in the 21st century”, Science, 330, 1496–1501.CrossRef
    Powney, G. D., Roy, D. B., Chapman, D. and Oliver, T. H. (2010), “Synchrony of butterfly populations across species’ geographic ranges”, Oikos, 119, 1690–1696.CrossRef
    R Core Team (2015), R: A language and environment for statistical computing. Vienna, Austria. http://​www.​R-project.​org/​ .
    Rothery, P. and Roy, D. B. (2001), “Application of generalized additive models to butterfly transect count data”, Journal of Applied Statistics, 28, 897–909.CrossRef MathSciNet MATH
    Roy, D. B., Rothery, P., Moss, D., Pollard, E. and Thomas, J. A. (2001), “Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change”, Journal of Animal Ecology, 70, 201–217.CrossRef
    Roy, D. B. and Sparks, T. H. (2000), “Phenology of British butterflies and climate change”, Global Change Biology, 6, 407–416.CrossRef
    Soulsby, R. L. and Thomas, J. A. (2012), “Insect population curves: modelling and application to butterfly transect data”, Methods in Ecology and Evolution, 3, 832–841.CrossRef
    Sparks, T. H. and Yates, T. J. (1997), “The effect of spring temperature on the appearance dates of British butterflies 1883–1993”, Ecography, 20, 368–374.CrossRef
    Spieth, H. R., Pörschmann, U. and Teiwes, C. (2011), “The occurrence of summer diapause in the large white butterfly Pieris brassicae (Lepidoptera: Pieridae): A geographical perspective”, European Journal of Entomology, 108, 377–384.CrossRef
    Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., Hannah, L. et al. (2004), “Extinction risk from climate change”, Nature, 427, 145–148.CrossRef
    Thomas, J. A. (2005), “Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups”, Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 339–357.CrossRef
    Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. and Maes, D. (2015), “The lost generation hypothesis: could climate change drive ectotherms into a developmental trap?”, Oikos, 124, 54–61.CrossRef
  • 作者单位:Emily B. Dennis (1) (2)
    Byron J. T. Morgan (1)
    Stephen N. Freeman (3)
    David B. Roy (3)
    Tom Brereton (2)

    1. School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK
    2. Butterfly Conservation, Manor Yard, East Lulworth, Wareham, UK
    3. Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, UK
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Statistics
    Agriculture
    Statistics for Life Sciences, Medicine and Health Sciences
    Biostatistics
    Monitoring/Environmental Analysis
  • 出版者:Springer New York
  • ISSN:1537-2693
文摘
We present models which provide succinct descriptions of longitudinal seasonal insect count data. This approach produces, for the first time, estimates of the key parameters of brood productivities. It may be applied to univoltine and bivoltine species. For the latter, the productivities of each brood are estimated separately, which results in new indices indicating the contributions from different generations. The models are based on discrete distributions, with expectations that reflect the underlying nature of seasonal data. Productivities are included in a deterministic, auto-regressive manner, making the data from each brood a function of those in the previous brood. A concentrated likelihood results in appreciable efficiency gains. Both phenomenological and mechanistic models are used, including weather and site-specific covariates. Illustrations are provided using data from the UK Butterfly Monitoring Scheme, however the approach is perfectly general. Consistent associations are found when estimates of productivity are regressed on northing and temperature. For instance, for univoltine species productivity is usually lower following milder winters, and mean emergence times of adults for all species have become earlier over time, due to climate change. The predictions of fitted dynamic models have the potential to improve the understanding of fundamental demographic processes. This is important for insects such as UK butterflies, many species of which are in decline. Supplementary materials for this article are available online. Keywords Abundance indices Auto-regression Concentrated likelihood Generalised additive models Phenology Stopover models
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.