A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation
详细信息    查看全文
  • 作者:Abdul-Majid Wazwaz ; S. A. El-Tantawy
  • 关键词:Generalized KP equation ; simplified Hirota’s method ; Painlevé test
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:84
  • 期:2
  • 页码:1107-1112
  • 全文大小:378 KB
  • 参考文献:1.Wazwaz, A.M.: Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17, 491–495 (2012)MathSciNet CrossRef MATH
    2.Wazwaz, A.M.: Multi-front waves for extended form of modified Kadomtsev–Petviashvili equations. Appl. Math. Mech. 32(7), 875–880 (2011)MathSciNet CrossRef MATH
    3.Ma, W.X., Xia, T.: Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation. Phys. Scr. 87, 055003 (2013)CrossRef MATH
    4.Ma, M.A., Abdeljabbar, A/.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multi exp-function algorithm. Appl. Math. Comput. 218, 11871–11879 (2012)MathSciNet CrossRef MATH
    5.Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRef MATH
    6.Biswas, A., Triki, H., Labidi, M.: Bright and dark solitons of the Rosenau–Kawahara equation with power law nonlinearity. Phys. Wave Phenom. 19(1), 24–29 (2011)CrossRef
    7.Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)MathSciNet CrossRef MATH
    8.Biswas, A.: Solitary waves for power-law regularized long wave equation and \(R(m, n)\) equation. Nonlinear Dyn. 59(3), 423–426 (2010)MathSciNet CrossRef MATH
    9.Biswas, A., Khalique, C.M.: Stationary solitons for nonlinear dispersive Schrodinger’s equation. Nonlinear Dyn. 63(4), 623–626 (2011)MathSciNet CrossRef
    10.Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)MATH
    11.El-Tantawy, S.A., Moslem, W.M., Schlickeiser, R.: Ion-acoustic dark solitons collision in an ultracold neutral plasma. Phys. Scr. 90(8), 085606 (2015)CrossRef
    12.El-Tantawy, S.A., Moslem, W.M.: Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: solitons collision and rogue waves. Phys. Plasma 21(5), 052112 (2014)CrossRef
    13.Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)MathSciNet CrossRef MATH
    14.Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)MathSciNet CrossRef MATH
    15.Xu, G.Q., Li, S.B.: Symbolic computation of the Painleve test for nonlinear partial differential equations using Maple. Comput. Phys. Commun. 161, 65–75 (2004)MathSciNet CrossRef MATH
    16.Xu, G.Q.: Painleve classification of a generalized coupled Hirota system. Phys. Rev. E 74, 027602 (2006)MathSciNet CrossRef
    17.Xu, G.Q.: The integrability for a generalized seventh-order KdV equation: Painleve property, soliton solutions. Lax pairs and conservation laws. Phys. Scr. 89, 125201 (2014)CrossRef
    18.Wazwaz, A.M., Xu, G.Q.: Modified Kadomtsev–Petviashvili equation in (3+1) dimensions: multiple front-wave solutions. Commun. Theor. Phys. 63, 727–730 (2015)CrossRef MATH
    19.Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)
    20.Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)CrossRef
    21.Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theorem. Springer and HEP, Berlin (2009)CrossRef MATH
    22.Wazwaz, A.M.: \(N\) -soliton solutions for the Vakhnenko equation and its generalized forms. Phys. Scr. 82, 065006 (2010)CrossRef MATH
    23.Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003 (2011)CrossRef MATH
    24.Wazwaz, A.M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. Math. Comput. 150, 365–377 (2004)MathSciNet CrossRef MATH
    25.Wazwaz, A.M.: New solitons and kinks solutions to the Sharma–Tasso–Olver equation. Appl. Math. Comput. 188, 1205–1213 (2007)MathSciNet CrossRef MATH
    26.Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. (2015). doi:10.​1007/​s11071-015-2349-x
    27.Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. (2015). doi:10.​1007/​s11071-015-2427-0
  • 作者单位:Abdul-Majid Wazwaz (1)
    S. A. El-Tantawy (2)

    1. Department of Mathematics, Saint Xavier University, Chicago, IL, 60655, USA
    2. Department of Physics, Faculty of Science, Port Said University, Port Said, 42521, Egypt
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
We introduce a new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. We use the simplified Hirota’s direct method to derive multiple-soliton solutions for the new model with the coefficients of the spatial variables which are left free. We show that the phase shifts depend on all these coefficients. We prove that the new model fails the Painlevé integrability test although it gives multiple-soliton solutions. Moreover, for \(x=y=z\), this new model reduces to the potential KdV equation, which we will examine as well.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.