Thermodynamic Properties of $^{4}$ He Gas in the Temperature Range 4.2-0?K
详细信息    查看全文
  • 作者:S. M. Mosameh (1)
    A. S. Sandouqa (2)
    H. B. Ghassib (3)
    B. R. Joudeh (4) (5)
  • 关键词:Second virial coefficient ; Galitskii–Migdal–Feynman formalism ; $$^{4}$$ 4 He gas ; Phase ; transition point ; Equation of state
  • 刊名:Journal of Low Temperature Physics
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:175
  • 期:3-4
  • 页码:523-542
  • 全文大小:1,743 KB
  • 参考文献:1. R.P. Feynman, / Statistical Mechanics: A Set of Lectures (Benjamin, Reading, MA, 1992)
    2. K. Huang, / Statistical Mechanics (Wiley, New York, 1987)
    3. A.L. Fetter, J.D. Walecka, / Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)
    4. H.B. Ghassib, R.F. Bishop, M.R. Strayer, J. Low Temp. Phys. 23, 393-01 (1976) CrossRef
    5. R.F. Bishop, H.B. Ghassib, M.R. Strayer, Phys. Rev. A 13(4), 1570-580 (1976) CrossRef
    6. M.K. Al-Sugheir, H.B. Ghassib, B.R. Joudeh, Int. J. Mod. Phys. B 18, 2491-504 (2006) CrossRef
    7. A.S. Sandouqa, M.K. Al-Sugheir, H.B. Ghassib, Phys. Scr. 74, 5-1 (2006) CrossRef
    8. B.R. Joudeh, A.S. Sandouqa, M.K. Al-Sugheir, H.B. Ghassib, Phys. B 404, 1847-851 (2009) CrossRef
    9. A.S. Sandouqa, H.B. Ghassib, B.R. Joudeh, Chem. Phys. Lett. 490, 172-75 (2010) CrossRef
    10. B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-Sugheir, J. Low Temp. Phys. 161, 348-66 (2010) CrossRef
    11. H.R. Glyde, S.I. Hernadi, Phys. Rev. B 29(10), 4926-932 (1984) CrossRef
    12. C.W. Greef, H.R. Glyde, Phys. Rev. B 45(15), 7951-958 (1992) CrossRef
    13. G.A. Vliegenthart, H.N.W. Lekkerkerk, J. Chem. Phys. 112(13), 5364-369 (2000) CrossRef
    14. S. Zhou, Mol. Simul. 33(15), 1187-191 (2007) CrossRef
    15. R.A. Aziz, M.J. Slaman, Metrologia 27, 211-19 (1990) CrossRef
    16. G.S. Kell, G.E. Mclaurin, E. Whalley, J. Chem. Phys. 68(5), 2199-205 (1978) CrossRef
    17. G. Schneider, J.A. Duffie, J. Chem. Phys. 17(10), 751-54 (1949) CrossRef
    18. R.C. Kemp, W.R.G. Kemp, L.M. Besley, 1986. Metrologia 23, 61-6 (1986) CrossRef
    19. H. Luther, K. Grohmann, B. Fellmuth, Metrologia 33, 341-52 (1996) CrossRef
    20. P.P.M. Steur, M. Durieux, G.T. McConville, Metrologia 24, 69-7 (1987) CrossRef
    21. C. Gaiser, B. Fellmuth, Metrologia 46, 525-33 (2009) CrossRef
    22. J.J. Hurly, J.B. Mehl, J. Res. Nat. Inst. Stand. Tech. 112, 75-4 (2007) CrossRef
    23. H. Plumb, G. Cataland, Metrologia 2(4), 127-39 (1966) CrossRef
    24. E.M. Boyd, S.Y. Larsen, H. Plumb, J. Res. Nat. Bureau Stand. A. Phys. Chem. 72A(2), 155-56 (1968)
    25. K.H. Berry, Metrologia 15, 89-15 (1979) CrossRef
    26. L.W. Bruch, R. Kariotis, Phys. Rev. B 73(20), 193404 (2006)
    27. R.L. Siddon, M. Schick, Phys. Rev. A 9(4), 1753-756 (1974) CrossRef
    28. M.A. Barrufetand Ph, T. Eubank, Fluid Phase Equilibria 35, 107-16 (1987) CrossRef
    29. M.E. Boyd, S.Y. Larsen, J.E. Kilpatrick, J. Chem. Phys. 50(10), 4034-055 (1969) CrossRef
    30. H. Shi, W.-M. Zheng, Phys. A 258, 303-10 (1998) CrossRef
    31. P.P. Bezverkhy, J. Low Temp. Phys. 35(11), 741-47 (2009) CrossRef
    32. R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330-341 (1979) CrossRef
    33. R.A. Aziz, A.R. Janzen, Metrologia 25, 57-8 (1988) CrossRef
    34. G. Sposito, E. Hukoveh, J. Low Temp. Phys. 9(5/6), 495-98 (1972) CrossRef
    35. R.F. Bishop, H.B. Ghassib, M.R. Strayer, J. Low Temp. Phys. 24(5/6), 669-90 (1977) CrossRef
    36. E.V.L. Mello, J.J. Rehr, O.E. Vilches, Phys. Rev. B 28(7), 3759-764 (1983) CrossRef
    37. V.L. Seguin, H. Guignes, C. Lhuillier, Phys. Rev. B 36(1), 141-55 (1987) CrossRef
    38. B.R. Joudeh, Mod. Appl. Sci. 5, 25-6 (2011) CrossRef
    39. A.S. Sandouqa, Mod. Appl. Sci. 6, 32-4 (2012) CrossRef
    40. B.R. Joudeh, Phys. B 421, 41-5 (2013) CrossRef
    41. H.T. Stoof, M. Bijlsma, M. Houbiers, J. Res. Nat. Inst. Stand. Tech. 101(4), 443-55 (1996) CrossRef
    42. C. Kittel, H. Kroemer, / Thermal Physics (Freeman, New York, 1980)
    43. P.P.M. Steur, M. Durieux, G.T. McConville, Metrologia 24, 69-7 (1987) CrossRef
    44. H.B. Ghassib, A.S. Sandouqa, B.R. Joudeh, S.M. Mosameh, Can. J. Phys. (to be published)
    45. J.E. Kilpatrick, W.E. Keller, E.F. Hammel, N. Metropolis, Phys. Rev. 94(5), 1103-110 (1954) CrossRef
    46. A.R. Colclough, Metrologia 15, 183-93 (1979) CrossRef
    47. M.A. Barrufet, PhT Eubank, Fluid Phase Equilibria 35, 107-16 (1987) CrossRef
    48. S.-I. Kho, Phys. B 329-33, 38-9 (2003)
  • 作者单位:S. M. Mosameh (1)
    A. S. Sandouqa (2)
    H. B. Ghassib (3)
    B. R. Joudeh (4) (5)

    1. Department of Applied Sciences, Irbid University College, Al-Balqa-Applied University, Irbid, Jordan
    2. Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa-Applied University, Amman, Jordan
    3. Department of Physics, The University of Jordan, Amman, Jordan
    4. Applied Physics Department, Tafila Technical University, Tafila, Jordan
    5. Department of Computer Science, College of Shari’a and Islamic Studies in Al Ahsaa, Al Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
  • ISSN:1573-7357
文摘
The thermodynamic properties of $^{4}$ He gas are investigated in the temperature-range 4.2-0?K, with special emphasis on the second virial coefficient in both the classical and quantum regimes. The main input in computing the quantum coefficient is the ‘effective-phase shifts. These are calculated within the framework of the Galitskii–Migdal–Feynman (GMF) formalism, using the HFDHE2 and Sposito potentials. The virial equation of state is constructed. Extensive calculations are carried out for the pressure–volume–temperature (P–V–T) behavior, as well as chemical potential, and nonideality of the system. The following results are obtained. First, the validity of the GMF formalism for the present system is demonstrated beyond any doubt. Second, the boiling point (phase-transition point) of $^{4}$ He gas is determined from the P–V behavior using the virial equation of state, its value being closest than all previous results to the experimental value. Third, the chemical potential $\upmu $ is evaluated from the quantum second virial coefficient. It is found that $\upmu $ increases (becomes less negative) as the temperature decreases or the number density n increases. Further, $\upmu $ shows no sensitivity to the differences between the potentials used up to n = 10 $^{27}$ m $^{-3}$ . Finally, the compressibility Z is computed and discussed as a measure of the nonideality of the system.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.