Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46
详细信息    查看全文
  • 作者:Jilagamazhi Fu ; Parveen Sharma ; Vic Spicer…
  • 关键词:Omics ; mcl ; PHA ; Heavy metals ; P. putida LS46 ; Biodiesel ; derived waste glycerol
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:99
  • 期:13
  • 页码:5583-5592
  • 全文大小:249 KB
  • 参考文献:Bender C, Cooksey D (1987) Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 169:470鈥?74PubMed Central PubMed
    Brown NL, Ford SJ, Pridmore RD, Fritzinger DC (1983) Deoxyribonucleic acid sequence of a gene from the Pseudomonas transposon TN501 encoding mercuric reductase. Biochemistry 22:4089鈥?095. doi:10.鈥?021/鈥媌i00286a015 PubMed View Article
    Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145鈥?63. doi:10.鈥?016/鈥婼0168-6445(03)00051-2 PubMed View Article
    C谩novas D, Cases I, De Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242鈥?256. doi:10.鈥?111/鈥媕.鈥?462-2920.鈥?003.鈥?0463.鈥媥 PubMed View Article
    Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci 88:8915鈥?919. doi:10.鈥?073/鈥媝nas.鈥?8.鈥?0.鈥?915 PubMed Central PubMed View Article
    Chatzifragkou A, Papanikolaou S (2012) Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95:13 27. doi:10.鈥?007/鈥媠00253-012-4111-3
    Escapa I, Del Cerro C, Garc铆a J, Prieto M (2013) The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 15:93鈥?10. doi:10.鈥?111/鈥媕.鈥?462-2920.鈥?012.鈥?2790.鈥媥 PubMed View Article
    Fan F, Ghanem M, Gadda G (2004) Cloning, sequence analysis, and purification of choline oxidase from鈥?lt;鈥塱鈥?gt;鈥?em class="EmphasisTypeItalic">Arthrobacter globiformis</i>: a bacterial enzyme involved in osmotic stress tolerance. Arch Biochem Biophys 421:149鈥?58. doi:10.鈥?016/鈥媕.鈥媋bb.鈥?003.鈥?0.鈥?03 PubMed View Article
    Fu J, Sharma U, Sparling R, Cicek N, Levin DB (2014) Evaluation of medium-chain length Polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Can J Microbiol 60:461鈥?68. doi:10.鈥?139/鈥媍jm-2014-0108 PubMed View Article
    Gonz谩lez-Guerrero M, Raimunda D, Cheng X, Arg眉ello JM (2010) Distinct functional roles of homologous Cu鈥?鈥塭fflux ATPases in Pseudomonas aeruginosa. Mol Microbiol 78:1246鈥?258. doi:10.鈥?111/鈥媕.鈥?365-2958.鈥?010.鈥?7402.鈥媥 PubMed View Article
    Gungormusler-Yilmaz M, Shamshurin D, Grigoryan M, Taillefer M, Spicer V, Krokhin OV, Sparling R, Levin DB (2014) Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1, 3-propanediol synthesis at high glycerol loading. AMB Express 4:63鈥?7. doi:10.鈥?186/鈥媠13568-014-0063-6 PubMed Central PubMed View Article
    Guti茅rrez-Barranquero JA, de Vicente A, Carri贸n VJ, Sundin GW, Cazorla FM (2013) Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Appl Environ Microbiol 79:1028鈥?033. doi:10.鈥?128/鈥婣EM.鈥?2644-12 PubMed Central PubMed View Article
    Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215鈥?26. doi:10.鈥?007/鈥媠10295-005-0224-3 PubMed View Article
    Hantke K (2001) Bacterial zinc transporters and regulators. In: Mark W (ed) Zinc Biochemistry, Physiology, and Homeostasis. Springer, Berlin, pp 53鈥?3View Article
    Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML (1996) Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 178:3996鈥?003PubMed Central PubMed
    Hu RM, Liao ST, Huang CC, Huang YW, Yang TC (2012) An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS ONE 7:e51053. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?051053 PubMed Central PubMed View Article
    Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, O鈥機onnor KE (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623鈥?33. doi:10.鈥?007/鈥媠00253-012-4058-4 PubMed View Article
    Kosono S, Haga K, Tomizawa R, Kajiyama Y, Hatano K, Takeda S, Wakai Y, Hino M, Kudo T (2005) Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol 187:5242鈥?248. doi:10.鈥?128/鈥婮B.鈥?87.鈥?5.鈥?242-5248.鈥?005 PubMed Central PubMed View Article
    Leedj盲rv A, Ivask A, Virta M (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol 190:2680鈥?689. doi:10.鈥?128/鈥婮B.鈥?1494-07 PubMed Central PubMed View Article
    Li XZ, Barr茅 N, Poole K (2000) Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 46:885鈥?93. doi:10.鈥?093/鈥媕ac/鈥?6.鈥?.鈥?85 PubMed View Article
    Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M (2013) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560鈥揇567. doi:10.鈥?093/鈥媙ar/鈥媑kt963 PubMed Central PubMed View Article
    Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal鈥恟esponsive genes. FEMS Microbiol Rev 27:385鈥?10. doi:10.鈥?016/鈥婼0168-6445(03)00045-7 PubMed View Article
    Mich茅a H, Mehri HU, Gotoh N, Kocjancic Curty L, Pech猫re JC (1997) Characterization of MexE鈥揗exF鈥揙prN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345鈥?54. doi:10.鈥?046/鈥媕.鈥?365-2958.鈥?997.鈥?281594.鈥媥 View Article
    Miller C, Pettee B, Zhang C, Pabst M, McLean J, Anderson A (2009) Copper and cadmium: responses in Pseudomonas putida KT2440. Lett Appl Microbiol 49:775鈥?83. doi:10.鈥?111/鈥媕.鈥?472-765X.鈥?009.鈥?2741.鈥媥 PubMed View Article
    Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730鈥?50PubMed View Article
    Pabst MW, Miller CD, Dimkpa CO, Anderson AJ, McLean JE (2010) Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium Pseudomonas putida. Chemosphere 81:904鈥?10. doi:10.鈥?016/鈥媕.鈥媍hemosphere.鈥?010.鈥?7.鈥?69 PubMed View Article
    Pan JH, Chen Y, Huang YH, Tao YW, Wang J, Li Y, Peng Y, Dong T, Lai XM, Lin YC (2011) Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res 34:1177鈥?181. doi:10.鈥?007/鈥媠12272-011-0716-9 PubMed View Article
    Posada JA, Naranjo JM, L贸pez JA, Higuita JC, Cardona CA (2011) Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochem 46:310鈥?17. doi:10.鈥?016/鈥媕.鈥媝rocbio.鈥?010.鈥?9.鈥?03 View Article
    Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933鈥?939. doi:10.鈥?021/鈥媕f800602s PubMed View Article
    Saier MH, Reddy VS, Tamang DG, V盲stermark 脜 (2014) The transporter classification database. Nucleic Acids Res 34:D181鈥揇186. doi:10.鈥?093/鈥媙ar/鈥媑kt1097 View Article
    Sharma PK, Fu J, Cicek N, Sparling R, Levin DB (2012) Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46. Can J Microbiol 58:982鈥?89. doi:10.鈥?139/鈥媤2012-074 PubMed View Article
    Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33鈥?6. doi:10.鈥?093/鈥媙ar/鈥?8.鈥?.鈥?3 PubMed Central PubMed View Article
    Teitzel GM, Geddie A, Susan K, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242鈥?256. doi:10.鈥?128/鈥婮B.鈥?0837-06 PubMed Central PubMed View Article
    Thompson J, He B (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22:261鈥?67View Article
    Tortajada M, Ferreira da Silva L, Prieto MA (2013) Second-generation functionalized mediumchain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol 16:1鈥?5PubMed
    Utsumi R, Yagi T, Katayama S, Katsuragi K, Tachibana K, Toyoda H, Ouchi S, Obata K, Shibana Y, Noda M (1991) Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia. Agric Biol Chem 55:1913鈥?918PubMed View Article
    Verbeke TJ, Spicer V, Krokhin OV, Zhang X, Schellenberg JJ, Fristensky B, Wilkins JA, Levin DB, Sparling R (2013) Thermoanaerobacter thermohydrosulfuricus WC1 shows protein complement stability during the fermentation of key lignocellulose-derived substrates. Appl Environ Microbiol 80:1602鈥?625. doi:10.鈥?128/鈥婣EM.鈥?3555-13 PubMed View Article
    Verhoef S, Gao N, Ruijssenaars HJ, de Winde JH (2014) Crude glycerol as feedstock for the sustainable production of p-hydroxybenzoate by Pseudomonas putida S12. New Biotechnol 31:114鈥?19. doi:10.鈥?016/鈥媕.鈥媙bt.鈥?013.鈥?8.鈥?06 View Article
    Wargo MJ, Szwergold BS, Hogan DA (2008) Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 190:2690鈥?699. doi:10.鈥?128/鈥婮B.鈥?1393-07 PubMed Central PubMed View Article
    Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche - specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299鈥?23. doi:10.鈥?111/鈥媕.鈥?574-6976.鈥?010.鈥?0249.鈥媥 PubMed Central PubMed View Article
    Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93:1305鈥?314. doi:10.鈥?007/鈥媠00253-011-3454-5 PubMed View Article
  • 作者单位:Jilagamazhi Fu (1)
    Parveen Sharma (1)
    Vic Spicer (2)
    Oleg V. Krokhin (2)
    Xiangli Zhang (3)
    Brian Fristensky (3)
    John A. Wilkins (2)
    Nazim Cicek (1)
    Richard Sparling (4)
    David. B. Levin (1)

    1. Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
    2. Department of Internal Medicine and Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
    3. Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
    4. Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na+, and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na+, were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.