MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers
详细信息    查看全文
  • 作者:Benjamin L Jackson (93)
    Anna Grabowska (93)
    Hari L Ratan (93) (94)

    93. Unit of Cancer Biology
    ; University of Nottingham ; Queens Medical Centre ; Derby Road ; Nottingham ; NG7 2UH ; England
    94. Department of Urology
    ; Nottingham City Hospital ; Hucknall Road ; Nottingham ; NG5 1PB ; England
  • 关键词:Prostatic neoplasms ; MicroRNAs ; Biological markers
  • 刊名:BMC Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:351 KB
  • 参考文献:1. Lee, RC, Feinbaum, RL, Ambros, V (1993) The C-elegans heterochronic gene Lin-4 encodes small rnas with antisense complementarity to Lin-14. Cell 75: pp. 843-854 CrossRef
    2. Griffiths-Jones, S (2004) The microRNA registry. Nucleic Acids Res 32: pp. D109-D111 CrossRef
    3. Mattick, JS, Makunin, IV (2006) Non-coding RNA. Hum Mol Genet 15: pp. R17-R29 CrossRef
    4. Chen, X, Ba, Y, Ma, L, Cai, X, Yin, Y, Wang, K, Guo, J, Zhang, Y, Chen, J, Guo, X, Li, Q, Li, X, Wang, W, Zhang, Y, Wang, J, Jiang, X, Xiang, Y, Xu, C, Zheng, P, Zhang, J, Li, R, Zhang, H, Shang, X, Gong, T, Ning, G, Wang, J, Zen, K, Zhang, J, Zhang, CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18: pp. 997-1006 CrossRef
    5. Pritchard, CC, Cheng, HH, Tewari, M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13: pp. 358-369 CrossRef
    6. Chen, X, Ba, Y, Ma, L, Cai, X, Yin, Y, Wang, K, Guo, J, Zhang, Y, Chen, J, Guo, X, Li, Q, Li, X, Wang, W, Zhang, Y, Wang, J, Jiang, X, Xiang, Y, Xu, C, Zheng, P, Zhang, J, Li, R, Zhang, H, Shang, X, Gong, T, Ning, G, Wang, J, Zen, K, Zhang, J, Zhang, CY (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: pp. 10513-10518 CrossRef
    7. Hanahan, D, Weinberg, RA (2011) Hallmarks of cancer: the next generation. Cell 144: pp. 646-674 CrossRef
    8. Catto, JW, Alcaraz, A, Bjartell, AS, De Vere White, R, Evans, CP, Fussel, S, Hamdy, FC, Kallioniemi, O, Mengual, L, Schlomm, T, Visakorpi, T (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59: pp. 671-681 CrossRef
    9. Amir, S, Ma, AH, Shi, XB, Xue, L, Kung, HJ (2013) Oncomir miR-125b suppresses p14(ARF) to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One 8: pp. 4 CrossRef
    10. Shi, X-B, Xue, L, Ma, A-H, Tepper, CG, Kung, H-J, White, RW (2011) miR-125b promotes growth of prostate cancer xenograft tumor through targeting Pro-apoptotic genes. Prostate 71: pp. 538-549 CrossRef
    11. Aqeilan, RI, Calin, GA, Croce, CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17: pp. 215-220 CrossRef
    12. Bonci, D, Coppola, V, Musumeci, M, Addario, A, Giuffrida, R, Memeo, L, D'Urso, L, Pagliuca, A, Biffoni, M, Labbaye, C, Bartucci, M, Muto, G, Peschle, C, De Maria, R (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: pp. 1271-1277 CrossRef
    13. Lu, Z, Liu, M, Stribinskis, V, Klinge, CM, Ramos, KS, Colburn, NH, Li, Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: pp. 4373-4379 CrossRef
    14. Yang, CH, Yue, J, Fan, M, Pfeffer, LM (2010) IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res 70: pp. 8108-8116 CrossRef
    15. Attwooll, C, Denchi, EL, Helin, K (2004) The E2F family: specific functions and overlapping interests. Embo J 23: pp. 4709-4716 CrossRef
    16. Sylvestre, Y, De Guire, V, Querido, E, Mukhopadhyay, UK, Bourdeau, V, Major, F, Ferbeyre, G, Chartrand, P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282: pp. 2135-2143 CrossRef
    17. Pesta, M, Klecka, J, Kulda, V, Topolcan, O, Hora, M, Eret, V, Ludvikova, M, Babjuk, M, Novak, K, Stolz, J, Holubec, L (2010) Importance of miR-20a expression in prostate cancer tissue. Anticancer Res 30: pp. 3579-3583
    18. Ambs, S, Prueitt, RL, Yi, M, Hudson, RS, Howe, TM, Petrocca, F, Wallace, TA, Liu, CG, Volinia, S, Calin, GA, Yfantis, HG, Stephens, RM, Croce, CM (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68: pp. 6162-6170 CrossRef
    19. Gandellini, P, Folini, M, Longoni, N, Pennati, M, Binda, M, Colecchia, M, Salvioni, R, Supino, R, Moretti, R, Limonta, P, Valdagni, R, Daidone, MG, Zaffaroni, N (2009) miR-205 exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase C epsilon. Cancer Res 69: pp. 2287-2295 CrossRef
    20. Menges, CW, Altomare, DA, Testa, JR (2009) FAS-Associated Factor 1 (FAF1): Diverse functions and implications for oncogenesis. Cell Cycle 8: pp. 2528-2534 CrossRef
    21. Qin, WM, Shi, Y, Zhao, BT, Yao, CG, Jin, L, Ma, JX, Jin, YX (2010) miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5: pp. 2
    22. Zaman, MS, Chen, Y, Deng, G, Shahryari, V, Suh, SO, Saini, S, Majid, S, Liu, J, Khatri, G, Tanaka, Y, Dahiya, R (2010) The functional significance of microRNA-145 in prostate cancer. Br J Cancer 103: pp. 256-264 CrossRef
    23. Cretney, E, Takeda, K, Yagita, H, Glaccum, M, Peschon, JJ, Smyth, MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol (Baltimore Md: 1950) 168: pp. 1356-1361 CrossRef
    24. Taddei, ML, Giannoni, E, Fiaschi, T, Chiarugi, P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226: pp. 380-393 CrossRef
    25. Ong, CHP, Bateman, A (2003) Progranulin (Granulin-epithelin precursor, PC-cell derived growth factor, Acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18: pp. 1275-1288
    26. Monami, G, Emiliozzi, V, Bitto, A, Lovat, F, Xu, SQ, Goldoni, S, Fassan, M, Serrero, G, Gomella, LG, Baffa, R, Iozzo, RV, Morrione, A (2009) Proepithelin regulates prostate cancer cell biology by promoting cell growth, migration, and anchorage-independent growth. Am J Pathol 174: pp. 1037-1047 CrossRef
    27. Wang, WX, Kyprianou, N, Wang, XW, Nelson, PT (2010) Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res 70: pp. 9137-9142 CrossRef
    28. Fuse, M, Nohata, N, Kojima, S, Sakamoto, S, Chiyomaru, T, Kawakami, K, Enokida, H, Nakagawa, M, Naya, Y, Ichikawa, T, Seki, N (2011) Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 38: pp. 1093-1101
    29. Xu, B, Niu, X, Zhang, X, Tao, J, Wu, D, Wang, Z, Li, P, Zhang, W, Wu, H, Feng, N, Wang, Z, Hua, L, Wang, X (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350: pp. 207-213 CrossRef
    30. Tao, J, Wu, DY, Xu, B, Qian, WC, Li, PC, Lu, Q, Yin, CJ, Zhang, W (2012) microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 27: pp. 1967-1975
    31. Xu, B, Wang, N, Wang, X, Tong, N, Shao, N, Tao, J, Li, P, Niu, X, Feng, N, Zhang, L, Hua, L, Wang, Z, Chen, M (2012) MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate 72: pp. 1171-1178 CrossRef
    32. Kalluri, R, Weinberg, RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119: pp. 1420-1428 CrossRef
    33. Gandellini, P, Profumo, V, Casamichele, A, Fenderico, N, Borrelli, S, Petrovich, G, Santilli, G, Callari, M, Colecchia, M, Pozzi, S, De Cesare, M, Folini, M, Valdagni, R, Mantovani, R, Zaffaroni, N (2012) miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ 19: pp. 1750-1760 CrossRef
    34. Peng, X, Guo, W, Liu, T, Wang, X, Tu, X, Xiong, D, Chen, S, Lai, Y, Du, H, Chen, G, Liu, G, Tang, Y, Huang, S, Zou, X (2011) Identification of miRs-143 and-145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 6: pp. 5
    35. Huang, S, Guo, W, Tang, Y, Ren, D, Zou, X, Peng, X (2012) miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol Rep 28: pp. 1831-1837
    36. Ru, P, Steele, R, Newhall, P, Phillips, NJ, Toth, K, Ray, RB (2012) MicroRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther 11: pp. 1166-1173 CrossRef
    37. Ribas, J, Ni, X, Haffner, M, Wentzel, EA, Salmasi, AH, Chowdhury, WH, Kudrolli, TA, Yegnasubramanian, S, Luo, J, Rodriguez, R, Mendell, JT, Lupold, SE (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69: pp. 7165-7169 CrossRef
    38. Li, T, Li, RS, Li, YH, Zhong, S, Chen, YY, Zhang, CM, Hu, MM, Shen, ZJ (2012) miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 187: pp. 1466-1472 CrossRef
    39. Jalava, SE, Urbanucci, A, Latonen, L, Waltering, KK, Sahu, B, Janne, OA, Seppala, J, Lahdesmaki, H, Tammela, TLJ, Visakorpi, T (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31: pp. 4460-4471 CrossRef
    40. Fletcher, CE, Dart, DA, Sita-Lumsden, A, Cheng, H, Rennie, PS, Bevan, CL (2012) Androgen-regulated processing of the oncomir MiR-27a, which targets prohibitin in prostate cancer. Hum Mol Genet 21: pp. 3112-3127 CrossRef
    41. Waltering, KK, Porkka, KP, Jalava, SE, Urbanucci, A, Kohonen, PJ, Latonen, LM, Kallioniemi, OP, Jenster, G, Visakorpi, T (2011) Androgen regulation of micro-RNAs in prostate cancer. Prostate 71: pp. 604-614 CrossRef
    42. Lu, J, Getz, G, Miska, EA, Alvarez-Saavedra, E, Lamb, J, Peck, D, Sweet-Cordero, A, Ebert, BL, Mak, RH, Ferrando, AA, Downing, JR, Jacks, T, Horvitz, HR, Golub, TR (2005) MicroRNA expression profiles classify human cancers. Nature 435: pp. 834-838 CrossRef
    43. Sun, T, Wang, Q, Balk, S, Brown, M, Lee, GS, Kantoff, P (2009) The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 69: pp. 3356-3363 CrossRef
    44. Spahn, M, Kneitz, S, Scholz, CJ, Stenger, N, Rudiger, T, Strobel, P, Riedmiller, H, Kneitz, B (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127: pp. 394-403
    45. Epis, MR, Giles, KM, Barker, A, Kendrick, TS, Leedman, PJ (2009) miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 284: pp. 24696-24704 CrossRef
    46. Nadiminty, N, Tummala, R, Lou, W, Zhu, Y, Zhang, J, Chen, X, EVere White, RW, Kung, HJ, Evans, CP, Gao, AC (2012) MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem 287: pp. 1527-1537 CrossRef
    47. Mulholland, DJ, Dedhar, S, Wu, H, Nelson, CC (2006) PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 25: pp. 329-337 CrossRef
    48. Sarker, D, Reid, AH, Yap, TA, de Bono, JS (2009) Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 15: pp. 4799-4805 CrossRef
    49. Tian, L, Fang, YX, Xue, JL, Chen, JZ (2013) Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro. PLoS One 8: pp. e75885 CrossRef
    50. Wu, Z, He, B, He, J, Mao, X (2013) Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate 73: pp. 596-604 CrossRef
    51. Poliseno, L, Salmena, L, Riccardi, L, Fornari, A, Song, MS, Hobbs, RM, Sportoletti, P, Varmeh, S, Egia, A, Fedele, G, Rameh, L, Loda, M, Pandolfi, PP (2010) Identification of the miR-106b鈥墌鈥?5 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3: pp. ra29 CrossRef
    52. Poliseno, L, Salmena, L, Zhang, J, Carver, B, Haveman, WJ, Pandolfi, PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: pp. 1033-1038 CrossRef
    53. Wang, G, Lunardi, A, Zhang, J, Chen, Z, Ala, U, Webster, KA, Tay, Y, Gonzalez-Billalabeitia, E, Egia, A, Shaffer, DR, Carver, B, Liu, XS, Taulli, R, Kuo, WP, Nardella, C, Signoretti, S, Cordon-Cardo, C, Gerald, WL, Pandolfi, P (2013) Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet 45: pp. 739-746 CrossRef
    54. Lee, C, Montie, JE, Shah, RB, Pienta, KJ, Rubin, MA, Chinnaiyan, AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Sci (New York NY) 310: pp. 644-648 CrossRef
    55. Leshem, O, Madar, S, Kogan-Sakin, I, Kamer, I, Goldstein, I, Brosh, R, Cohen, Y, Jacob-Hirsch, J, Ehrlich, M, Ben-Sasson, S, Goldfinger, N, Loewenthal, R, Gazit, E, Rotter, V, Berger, R (2011) TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 6: pp. e21650 CrossRef
    56. Kim, J, Wu, L, Zhao, JC, Jin, HJ, Yu, J (2014) TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene 33: pp. 5183-5192 CrossRef
    57. Kao, CJ, Martiniez, A, Shi, XB, Yang, J, Evans, CP, Dobi, A, DeVere White, RW, Kung, HJ (2014) miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 33: pp. 2495-2503 CrossRef
    58. Gordanpour, A, Stanimirovic, A, Nam, RK, Moreno, CS, Sherman, C, Sugar, L, Seth, A (2011) miR-221 Is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer. Anticancer Res 31: pp. 403-410
    59. Varambally, S, Dhanasekaran, SM, Zhou, M, Barrette, TR, Kumar-Sinha, C, Sanda, MG, Ghosh, D, Pienta, KJ, Sewalt, RG, Otte, AP, Rubin, MA, Chinnaiyan, AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: pp. 624-629 CrossRef
    60. Hoffmann, MJ, Engers, R, Florl, AR, Otte, AP, Muller, M, Schulz, WA (2007) Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Therapy 6: pp. 1403-1412 CrossRef
    61. Yu, J, Yu, J, Mani, RS, Cao, Q, Brenner, CJ, Cao, X, Wang, X, Wu, L, Li, J, Hu, M, Gong, Y, Cheng, H, Laxman, B, Vellaichamy, A, Shankar, S, Li, Y, Dhanasekaran, SM, Morey, R, Barrette, T, Lonigro, RJ, Tomlins, SA, Varambally, S, Qin, ZS, Chinnaiyan, AM (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17: pp. 443-454 CrossRef
    62. B枚rno, ST, Fischer, A, Kerick, M, F盲lth, M, Laible, M, Brase, JC, Kuner, R, Dahl, A, Grimm, C, Sayanjali, B, Isau, M, R枚hr, C, Wunderlich, A, Timmermann, B, Claus, R, Plass, C, Graefen, M, Simon, R, Demichelis, F, Rubin, MA, Sauter, G, Schlomm, T, S眉ltmann, H, Lehrach, H, Schweiger, MR (2012) Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov 2: pp. 1024-1035 CrossRef
    63. Cao, P, Deng, Z, Wan, M, Huang, W, Cramer, SD, Xu, J, Lei, M, Sui, G (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9: pp. 108 CrossRef
    64. Yu, DC, Li, QG, Ding, XW, Ding, YT (2011) Circulating MicroRNAs: potential biomarkers for cancer. Int J Mol Sci 12: pp. 2055-2063 CrossRef
    65. Lodes, MJ, Caraballo, M, Suciu, D, Munro, S, Kumar, A, Anderson, B (2009) Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 4: pp. 7 CrossRef
    66. Moltzahn, F, Olshen, AB, Baehner, L, Peek, A, Fong, L, Stoppler, H, Simko, J, Hilton, JF, Carroll, P, Blelloch, R (2011) Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 71: pp. 550-560 CrossRef
    67. Agaoglu, FY, Kovancilar, M, Dizdar, Y, Darendeliler, E, Holdenrieder, S, Dalay, N, Gezer, U (2011) Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol 32: pp. 583-588 CrossRef
    68. Gonzales, JC, Fink, LM, Goodman, OB, Symanowski, JT, Vogelzang, NJ, Ward, DC (2011) Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer 9: pp. 39-45 CrossRef
    69. Zhang, H-L, Yang, L-F, Zhu, Y, Yao, X-D, Zhang, S-L, Dai, B, Zhu, Y-P, Shen, Y-J, Shi, G-H, Ye, D-W (2011) Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71: pp. 326-331 CrossRef
    70. Brase, JC, Johannes, M, Schlomm, T, Faelth, M, Haese, A, Steuber, T, Beissbarth, T, Kuner, R, Sueltmann, H (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128: pp. 608-616 CrossRef
    71. Selth, LA, Townley, S, Gillis, JL, Ochnik, AM, Murti, K, Macfarlane, RJ, Chi, KN, Marshall, VR, Tilley, WD, Butler, LM (2012) Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer 131: pp. 652-661 CrossRef
    72. Selth, LA, Townley, SL, Bert, AG, Stricker, PD, Sutherland, PD, Horvath, LG, Goodall, GJ, Butler, LM, Tilley, WD (2013) Circulating microRNAs predict biochemical recurrence in prostate cancer patients. Br J Cancer 109: pp. 641-650 CrossRef
    73. Bryant, RJ, Pawlowski, T, Catto, JW, Marsden, G, Vessella, RL, Rhees, B, Kuslich, C, Visakorpi, T, Hamdy, FC (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106: pp. 768-774 CrossRef
    74. Huang, X, Yuan, T, Liang, M, Du, M, Xia, S, Dittmar, R, Wang, D, See, W, Costello, BA, Quevedo, F, Tan, W, Nandy, D, Bevan, GH, Longenbach, S, Sun, Z, Lu, Y, Wang, T, Thibodeau, SN, Boardman, L, Kohli, M, Wang, L (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67: pp. 33-41 CrossRef
    75. Lazaro-Ibanez, E, Sanz-Garcia, A, Visakorpi, T, Escobedo-Lucea, C, Siljander, P, Ayuso-Sacido, A, Yliperttula, M (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74: pp. 1379-1390 CrossRef
    76. Nguyen, HCN, Xie, W, Yang, M, Hsieh, C-L, Drouin, S, Lee, G-SM, Kantoff, PW (2013) Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 73: pp. 346-354 CrossRef
    77. Chen, ZH, Zhang, GL, Li, HR, Luo, JD, Li, ZX, Chen, GM, Yang, J (2012) A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 72: pp. 1443-1452 CrossRef
    78. Shen, J, Hruby, GW, McKiernan, JM, Gurvich, I, Lipsky, MJ, Benson, MC, Santella, RM (2012) Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 72: pp. 1469-1477 CrossRef
    79. Hao, Y, Zhao, Y, Zhao, X, He, C, Pang, X, Wu, TC, Califano, JA, Gu, X (2011) Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Investig 29: pp. 318-324 CrossRef
    80. Sun, T, Yang, M, Chen, SY, Balk, S, Pomerantz, M, Hsieh, CL, Brown, M, Lee, GSM, Kantoff, PW (2012) The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 72: pp. 1093-1103 CrossRef
    81. Schaefer, A, Jung, M, Mollenkopf, HJ, Wagner, I, Stephan, C, Jentzmik, F, Miller, K, Lein, M, Kristiansen, G, Jung, K (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126: pp. 1166-1176
    82. Szczyrba, J, Nolte, E, Wach, S, Kremmer, E, Stohr, R, Hartmann, A, Wieland, W, Wullich, B, Grasser, FA (2011) Downregulation of Sec23A protein by miRNA-375 in prostate carcinoma. Mol Cancer Res 9: pp. 791-800 CrossRef
    83. The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2407/14/930/prepub
  • 刊物主题:Cancer Research; Oncology; Stem Cells; Animal Models; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2407
文摘
Background This non-systematic review article aims to summarise the progress made in understanding the functional consequences of microRNA (miRNA) dysregulation in prostate cancer development, and the identification of potential miRNA targets as serum biomarkers for diagnosis or disease stratification. Results A number of miRNAs have been shown to influence key cellular processes involved in prostate tumourigenesis, including apoptosis-avoidance, cell proliferation and migration and the androgen signalling pathway. An overlapping group of miRNAs have shown differential expression in the serum of patients with prostate cancer of varying stages compared with unaffected individuals. The majority of studies thus far however, involve small numbers of patients and have shown variable and occasionally conflicting results Conclusion MiRNAs show promise as potential circulating biomarkers in prostate cancer, but larger prospective studies are required to validate particular targets and better define their clinical utility.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.