Interaction of Graphene Quantum Dots with 4-Acetamido-2,2,6,6-Tetramethylpiperidine-Oxyl Free Radicals: A Spectroscopic and Fluorimetric Study
详细信息    查看全文
  • 作者:Ojodomo J. Achadu ; Tebello Nyokong
  • 关键词:Graphene quantum dots ; Free radicals ; Fluorescence quenching ; Stern ; volmer quenching constant
  • 刊名:Journal of Fluorescence
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:283-295
  • 全文大小:2,284 KB
  • 参考文献:1.Dong Y, Chen C, Zheng X, Gao L, Yu H, Quan X (2012) One-step and high yield simultaneous preparation of single and multi-layer graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry 22:8764–8766CrossRef
    2.Li L, Wu G, Hong T, Yin Z, Sun D, Abdel-Halim ES, Zhu JJ (2014) Graphene quantum dots as fluorescence probes for turn-off sensing of melanine in the presence of Hg2+. ACS Appl Mater Interfaces 6:2858–2864PubMed CrossRef
    3.Ge J, Minhuan L, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Xiangmin M, Pengfei W, Chun-Sing L, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Commun 5:4596
    4.Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B (2012) Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv 2:2717–2720CrossRef
    5.Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039PubMed CrossRef
    6.Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research 8:355–381CrossRef
    7.Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338PubMed CrossRef
    8.Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–1245PubMed CrossRef
    9.Wang Y, Zhang L, Liang RP, Bai JM, Qiu J (2013) Using Graphene Quantum Dots as Photoluminescent Probes for Protein Kinase Sensing, Anal. Chem 85:9148–9155
    10.Li X, Zhu S, Xu B, Ma K, Zhang J, Yang B, Tian W (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779PubMed CrossRef
    11.Yuezhen H, Wang X, Sun J, Jiao S, Chen H, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Analytica Chimica Acta 810:71–78CrossRef
    12.Huang H, Liao L, Xu X, Zou M, Liu F, Li N (2013) The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): A platform for metal ion sensing. Talanta 15:152–157CrossRef
    13.Wu Z, Li W, Chen J, Yu C (2014) A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543PubMed CrossRef
    14.Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101:192–197PubMed CrossRef
    15.Adegoke O, Chidawanyika W, Nyokong T (2012) Interaction of CdTe quantum dots with 2,2-diphenyl-1-picrylhydrazyl free radical: a spectroscopic, fluorimetric and kinetic study. J Fluoresc 22:771–778PubMed CrossRef
    16.Adegoke O, Hosten E, McCleland C, Nyokong T (2012) CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion. Anal Chim Acta. 721:154–161PubMed CrossRef
    17.Tshangana C, Nyokong T (2015) The photophysical properties of multi-functional quantum dots-magnetic nanoparticles – indium octacarboxy phthalocyanine nanocomposite, J. Fluorescence 25:199–210CrossRef
    18.Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Raid EH, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports 4:1–9
    19.Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xied Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277
    20.Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Ed. 76:12660–11264
    21.Fischer S, Georges J (1996) Fluorescence quantum yield of Rhodamine 6G in ethanol as a function of concentration using lens spectrometry. Chemical physics letters. 260:115–118CrossRef
    22.Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale. 7:11727–11733PubMed CrossRef
    23.Benitez-Martinez S, Valcarcel M (2014) Graphene quantum dots as sensor for phenols in olive oil. Sensors and Actuators B 197:350–357CrossRef
    24.Tianju F, Wenjin Z, Wei T, Chunqiu Y, Songzhao T, Kaiyu C, Yidong L, Wei, H, Yong M, Arthur, E (2015) Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters 10:1–8
    25.Chua CK CK, Sofer Z, Šimek P, Jankovský O, K KÍ, Bakardjieva S, Kučková SH, Pumera M (2015) Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano 9:2548–2555PubMed CrossRef
    26.Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738PubMed CrossRef
    27.Dong Y, Lin J, Chen Y, Fu F, Chi Y, Chen G (2014) Graphene quantum dots and graphite nanocrystals in coal. Nanoscale 6:7410–7415PubMed CrossRef
    28.Zheng XT, Ananthanarayanan KQ, Luo P, Chen P (2015) Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 11:1620–1636PubMed CrossRef
    29.Feng Y, Zhao J, Yan X, Tang F, Xue Q (2014) Enhancement in the fluorescence of graphene quantum dots by hydrazine reduction. Carbon 66:334–339CrossRef
    30.Hu Y, Zhao G, Lu N, Chen Z, Zhang H, Li H, Shao L, Qu L (2013) Graphene quantum dots-carbon nanotubes hybrid arrays for supercapacitors. Nanotechnology. doi:10.​1088/​0957-4484/​24/​19/​195401 PubMedCentral
    31.Chien C, Li S, Lai W, Yeh Y, Chen H, Chen I, Chen L, Nemoto IS (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666CrossRef
    32.Wei D, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Li-Jun W, Shahnaz F, Li L (2013) Space-confinement-induced synthesis of Pyridinic- and pyrollic-Nitrogen doped graphene for the catalysis of oxygen reduction. Angew Chem Int Ed 52:11755–11759CrossRef
    33.Sen VD, Golubev VA (2009) Kinetics and mechanism for acid catalyzed disproportionation of 2,2,6,6 tetramethylpiperidine-1-oxyl. J Phys Org Chem 22:138–143CrossRef
    34.Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 11:433–442CrossRef
    35.Fengxiang W, Zhenyan G, Wu L, Wenjan W, Xifeng X, Qingli H (2014) Graphene quantum dots as fluorescent sensing platform for highly efficient detection of copper (II) ions. Sensors and Actuators B 190:516–522CrossRef
    36.Chakraborti H, Sinha S, Ghosh S, Pal SK (2013) Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dots to detect Hg2+ in 100 % aqueous solution. Materials letters 97:78–80CrossRef
    37.Murov SL, Carmichael I (1993) Hug GL in: “Handbook of Photochemistry” 2nd edition, Decker M. New York 207
    38.Liu EH, Qi LW, Li P (2010) Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin. Molecules 15:9092–9103PubMed CrossRef
  • 作者单位:Ojodomo J. Achadu (1)
    Tebello Nyokong (1)

    1. Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
文摘
We report on the interaction of graphene quantum dots (GQDs) with 4-acetamido-2,2,6,6-tetramethylpiperidine-oxyl (4-acetamido-TEMPO) free radicals. The GQDs were N and S, N doped. The fluorescence quantum yields were higher for the doped GQDs compared to the undoped. The interaction is assessed by spectrofluorimetric, steady state/time resolved fluorescence and electron paramagnetic resonance (EPR) techniques. Fluorescence quenching was observed upon the addition of 4-acetamido-TEMPO to the GQDs. Photo-induced electron transfer (PET) mechanism was suggested as the plausible mechanism involved in the fluorescence quenching in which 4-acetamido-TEMPO acted as the electron acceptor. Keywords Graphene quantum dots Free radicals Fluorescence quenching Stern-volmer quenching constant
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.