Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice
详细信息    查看全文
  • 作者:Michael J. Thomson (1) <br> Marjorie de Ocampo (1) <br> James Egdane (1) <br> M. Akhlasur Rahman (1) (4) <br> Andres Godwin Sajise (1) <br> Dante L. Adorada (1) (5) <br> Ellen Tumimbang-Raiz (2) <br> Eduardo Blumwald (2) <br> Zeba I. Seraj (3) <br> Rakesh K. Singh (1) (6) <br> Glenn B. Gregorio (1) <br> Abdelbagi M. Ismail (1) <br>
  • 关键词:Allelic variation ; MABC ; Near isogenic lines ; Rice ; Salt stress ; Saltol QTL
  • 刊名:Rice
  • 出版年:2010
  • 出版时间:September 2010
  • 年:2010
  • 卷:3
  • 期:2-3
  • 页码:148-160
  • 全文大小:308KB
  • 参考文献:1. Akbar M, Yabuno T, Nakao S. Breeding for saline resistant varieties of rice. I. Variability for salt tolerance among some rice varieties. Jpn J Breed. 1972;22:277鈥?4. <br> 2. Alam R, Rahman MS, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang E et al. Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from / Oryza sativa L. Pokkali. Plant Breed 2010; (in press). <br> 3. Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochem Biophys Acta. 2000;1465:140鈥?1. CrossRef <br> 4. Bohnert HJ, Gong Q, Li P, Ma S. Unraveling abiotic stress tolerance mechanisms鈥攇etting genomics going. Curr Opin Plant Biol. 2006;9:180鈥?. bi.2006.01.003">CrossRef <br> 5. Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G. RLFP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice ( / Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci. 2002;85:68鈥?6. <br> 6. Chinnusamy V, Schumaker K, Zhu J-K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot. 2004;55:225鈥?6. b/erh005">CrossRef <br> 7. Flowers TJ, Yeo AR. Variability in the resistance of sodium chloride salinity within rice ( / Oryza sativa L.) varieties. New Phytol. 1981;88:363鈥?3. b01731.x">CrossRef <br> 8. Garciadebl谩s B, Senn ME, Banuelos A, Rodriguez-Navarro A. Sodium transport and HKT transporters: the rice model. Plant J. 2003;34:788鈥?01. CrossRef <br> 9. Gregorio GB. Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). PhD. thesis, University of the Philippines, Los Ba帽os. 1997; 118 p. <br> 10. Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res. 2002;76:91鈥?01. CrossRef <br> 11. Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA. Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funcl Plant Biol. 2010;37:634鈥?5. CrossRef <br> 12. Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ. 2010;33:552鈥?5. CrossRef <br> 13. Horie T, Schroeder JI. Sodium transporters in plants: diverse genes and physiological functions. Plant Physiol. 2004;136:2457鈥?2. CrossRef <br> 14. Ismail AM, Heuer S, Thomson MJ, Wissuwa M. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol. 2007;65:547鈥?0. CrossRef <br> 15. Ismail AM, Thomson MJ, Singh RK, Gregorio GB, Mackill DJ. Designing rice varieties adapted to coastal areas of South and Southeast Asia. J Indian Soc Coast Agric Res. 2008;26:69鈥?3. <br> 16. Ismail AM, Thomson MJ, Vergara GV, Rahman MA, Singh RK, Gregorio GB, et al. Designing resilient rice varieties for coastal deltas using modern breeding tools. In: Hoanh CT, Szuster BW, Pheng KS, Ismail AM, Nobel AD, editors. Tropical Deltas and coastal zones: food production, communities and environment at the land-water interface. Wallingford: CAB; 2010. p. 154鈥?5. CrossRef <br> 17. IRRI. Standard evaluation system for rice. 4th ed. Manila: International Rice Research Institute; 1996. p. 52. <br> 18. Kim S-H, Bhat PR, Cui X, Walia H, Xu J, Wanamaker S, et al. Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biol. 2009;9:65. doi:10.1186/1471-2229-9-65 . CrossRef <br> 19. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet. 2004;108:253鈥?0. CrossRef <br> 20. Mackinney G. Absorption of light by chlorophyll solutions. J Biological Chem. 1941;140:315鈥?2. <br> 21. Martinoia E, Maeshima M, Neuhaus HE. Vacuolar transporters and their essential role in plant metabolism. J Exp Bot. 2007;58:83鈥?02. b/erl183">CrossRef <br> 22. M盲ser P, Gierth M, Schroeder JI. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil. 2002;247:43鈥?4. CrossRef <br> 23. Moradi F, Ismail AM. Responses of photosynthesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Ann Bot. 2007;99:1161鈥?3. b/mcm052">CrossRef <br> 24. Moradi F, Ismail AM, Gregorio GB, Egdane JA. Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Ind J Plant Physiol. 2003;8:105鈥?6. <br> 25. Munns R, Tester M. Mechanisms of salinity tolerance. Ann Rev Plant Biol. 2008;59:651鈥?1. CrossRef <br> 26. Nakayama H, Horie T, Yonamine I, Shinmyo A, Yoshida K. Improving salt tolerance in plant cells. Plant Biotechnol. 2005;22:477鈥?7. <br> 27. Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, et al. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet. 2007;115:767鈥?6. CrossRef <br> 28. Niones JM. Fine mapping of the salinity tolerance gene on chromosome 1 of rice ( / Oryza sativa L.) using near isogenic lines. MS dissertation. Laguna: University of the Philippines Los Ba帽os; 2004. <br> 29. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 2006;11:372鈥?. CrossRef <br> 30. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. 2005;37:1141鈥?. CrossRef <br> 31. Rodriguez-Navarro A, Rubio F. High-affinity potassium and sodium transport systems in plants. J Exp Bot. 2006;57:1149鈥?0. b/erj068">CrossRef <br> 32. Sahi C, Singh A, Kumar K, Blumwald E, Grover A. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics. 2006;6:263鈥?4. CrossRef <br> 33. Senadheera P, Maathuis FJM. Differentially regulated kinases and phosphatases in roots may contribute to inter-cultivar difference in rice salinity tolerance. Plant Signl Behavior. 2009;4:1163鈥?. b.4.12.9969">CrossRef <br> 34. Senadheera P, Singh RK, Maathuis FJM. Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. J Exp Bot. 2009;60:2553鈥?3. b/erp099">CrossRef <br> 35. Septiningsih EM, Pamplona AM, Sanchez DL, Maghirang-Rodriguez R, Neeraja CN, Vergara GV, et al. Development of Submergence-tolerant rice cultivars: the / Sub1 locus and beyond. Ann Bot. 2009;103:151鈥?0. b/mcn206">CrossRef <br> 36. Shylaraj KS, Sasidharan NK. VTL 5: a high yielding salinity tolerant rice variety for the coastal saline ecosystems of Kerala. J Trop Agric. 2005;43:25鈥?. <br> 37. Singh RK, Flowers TJ. The physiology and molecular biology of the effects of salinity on rice. In: Pessarakli M, editor. Handbook of plant and crop stress. 3rd ed. Florida: Taylor and Francis; 2010. p. 901鈥?2. <br> 38. Singh RK, Gregorio GB, Jain RK. QTL mapping for salinity tolerance in rice. Physiol Mol Biol Plants. 2007;13:87鈥?9. <br> 39. Singh RK, Redo帽a ED, Refuerzo L. Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee, editors. Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. New York: Springer; 2010. p. 387鈥?15. <br> 40. Thomson MJ, Ismail AM, McCouch SR, Mackill MJ. Marker assisted breeding. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee, editors. Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. New York: Springer; 2010. p. 451鈥?9. <br> 41. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, et al. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 2005;139:822鈥?5. CrossRef <br> 42. Walia H, Wilson G, Ismail AM, Close TJ, Cui X. Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. BMC Genomics. 2009;10:398. doi:10.1186/1471-2164-10-398 . CrossRef <br> 43. Yamaguchi Y, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 2005;10:615鈥?0. CrossRef <br> 44. Yeo AR, Flowers TJ. Salinity resistance in rice ( / Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol. 1986;13:161鈥?3. CrossRef <br> 45. Yoshida S, Forno DA, Cock JK, Gomez KA. Laboratory manual for physiological studies of rice. Manila: International Rice Research Institute; 1976. p. 38. <br>
  • 作者单位:Michael J. Thomson (1) <br> Marjorie de Ocampo (1) <br> James Egdane (1) <br> M. Akhlasur Rahman (1) (4) <br> Andres Godwin Sajise (1) <br> Dante L. Adorada (1) (5) <br> Ellen Tumimbang-Raiz (2) <br> Eduardo Blumwald (2) <br> Zeba I. Seraj (3) <br> Rakesh K. Singh (1) (6) <br> Glenn B. Gregorio (1) <br> Abdelbagi M. Ismail (1) <br><br>1. International Rice Research Institute, DAPO Box聽7777, Metro Manila, Philippines <br> 4. Bangladesh Rice Research Institute, Gazipur, Bangladesh <br> 5. School of Agricultural and Wine Sciences, Charles Sturt University, New South Wales, Australia <br> 2. Department of Plant Sciences, University of California, One Shields Ave, Davis, CA, 95616, USA <br> 3. Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh <br> 6. Eastern and Southern Africa Regional Office, IRRI, Dar Es Salaam, Tanzania <br>
文摘
This study characterized Pokkali-derived quantitative trait loci (QTLs) for seedling stage salinity tolerance in preparation for use in marker-assisted breeding. An analysis of 100 SSR markers on 140 IR29/Pokkali recombinant inbred lines (RILs) confirmed the location of the Saltol QTL on chromosome 1 and identified additional QTLs associated with tolerance. Analysis of a series of backcross lines and near-isogenic lines (NILs) developed to better characterize the effect of the Saltol locus revealed that Saltol mainly acted to control shoot Na+/K+ homeostasis. Multiple QTLs were required to acquire a high level of tolerance. Unexpectedly, multiple Pokkali alleles at Saltol were detected within the RIL population and between backcross lines, and representative lines were compared with seven Pokkali accessions to better characterize this allelic variation. Thus, while the Saltol locus presents a complex scenario, it provides an opportunity for marker-assisted backcrossing to improve salt tolerance of popular varieties followed by targeting multiple loci through QTL pyramiding for areas with higher salt stress.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.