The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids
详细信息    查看全文
  • 作者:Haifeng Jiang (1)
    Qianghui Xu (1)
    Chao Huang (1)
    Lin Shi (1)

    1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education
    ; Department of Thermal Engineering ; Tsinghua University ; Beijing ; 100084 ; China
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:118
  • 期:1
  • 页码:197-205
  • 全文大小:684 KB
  • 参考文献:1. A.S. Ahuja, Augmentation of heat transport in laminar-flow of polystyrene suspensions. 1. Experiments and results. J. Appl. Phys. 46, 3408鈥?416 (1975) CrossRef
    2. X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J. Appl. Phys. 100, 044325 (2006) CrossRef
    3. Y. Yang, A. Oztekin, S. Neti, S. Mohapatra, Particle agglometration and properties of nanofluids. J. Nanoparticle Res. 852, 1鈥?0 (2012)
    4. H. Jiang, H. Li, C. Zan, F. Wang, Q. Yang, L. Shi, Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim. Acta 579, 27鈥?0 (2014) CrossRef
    5. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in / Development and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol.66, ed. by D.A. Siginer, H.P. Wang (ASME, New York, 1995), pp. 99鈥?05
    6. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56鈥?8 (1991) CrossRef
    7. S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613鈥?616 (2000) CrossRef
    8. J. Che, T. Cagin, W.A. Goddard, Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65鈥?9 (2000) CrossRef
    9. H. Xie, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120鈥?23 (2007) CrossRef
    10. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspension. Appl. Phys. Lett. 79, 2252鈥?254 (2001) CrossRef
    11. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 25, 971鈥?85 (2004) CrossRef
    12. A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, A. Amrollahi, R. Khodafarin, Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp. Therm. Fluid Sci. 35, 717鈥?23 (2011) CrossRef
    13. M.S. Liu, M.C.C. Lin, C.C. Wang, Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res. Lett. 6, 297 (2011) CrossRef
    14. A. Indhuja, K.S. Suganthi, S. Manikandan, K.S. Rajan, Viscosity and thermal conductivity of dispersions of gum Arabic capped MWCNT in water: influence of MWCNT concentration and temperature. J. Taiwan Inst. Chem. E 44, 474鈥?79 (2013) CrossRef
    15. S. Halelfadl, T. Mare, P. Estell茅, Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 53, 104鈥?10 (2014) CrossRef
    16. S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Mar茅, P. Estell茅, R. Ahmad, Optimization of thermal performances and pressure drop of a rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Appl. Therm. Eng. 62, 492鈥?99 (2014) CrossRef
    17. P. Estell茅, S. Halelfadl, T. Mar茅, Lignin as dispersant for water-based carbon nanotube nanofluids: impact on viscosity and thermal conductivity. Int. Commun. Heat Mass Transf 57, 8鈥?2 (2014) CrossRef
    18. S.M.S. Murshed, C.A. Nieto de Castro, Superior thermal features of carbon nanotubes-based nanofluids鈥攁 review. Renew. Sustain. Energy Rev. 37, 155鈥?67 (2014) CrossRef
    19. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855鈥?63 (2002) CrossRef
    20. H.B. Kang, Y.W. Zhang, M. Yang, Molecular dynamics simulation of thermal conductivity of Cu鈥揂r nanofluid using EAM potential for Cu鈥揅u interactions. Appl. Phys. A, Mater. Sci. Process. 103, 1001鈥?008 (2011) CrossRef
    21. J.J. Wang, R.T. Zhang, J.W. Gao, G. Chen, Heat conduction mechanisms in nanofluids and suspensions. Nano Today 7, 124鈥?36 (2012) CrossRef
    22. J.C. Maxwell, / A Treatise on Electricity and Magnetism, 2nd ed edn., vol. 1 (Clarendon, Oxford, UK, 1881), p. 435
    23. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187鈥?91 (1962) CrossRef
    24. R.H. Davis, Thermal conductivity of mixture with spherical inclusions. Int. J. Thermophys. 7, 609鈥?20 (1986) CrossRef
    25. S. Lu, H. Lin, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J. Appl. Phys. 79, 6761鈥?769 (1996) CrossRef
    26. S.P. Jang, S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316鈥?318 (2004) CrossRef
    27. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton鈥揅rosser model. J. Nanoparticle Res. 6, 355鈥?61 (2004) CrossRef
    28. H. Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926鈥?932 (2005) CrossRef
    29. H.R. Imbesat, J. Ayush, K.G. Subrata, P.S. Mukherjee, Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf. 49, 595鈥?00 (2013) CrossRef
    30. H. Jiang, H. Li, Q. Xu, L. Shi, Effective thermal conductivity of nanofluids considering interfacial nano-shells. Mater. Chem. Phys. 148, 195鈥?00 (2014) CrossRef
    31. B. Lamas, B. Abreu, A. Fonseca, N. Martins, M. Oliveira, Critical analysis of the thermal conductivity models for CNT based nanofluids. Int. J. Therm. Sci. 78, 65鈥?6 (2014) CrossRef
    32. C.Y. Tso, S.C. Fu, C.Y.H. Chao, A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int J Heat Mass Transf. 70, 202鈥?14 (2014) CrossRef
    33. J.R. Henderson, F.V. Swol, On the interface between fluid and the planner wall: theory and simulations of a hard sphere fluid at a hard wall. Mol. Phys. 51, 991鈥?010 (1984) CrossRef
    34. C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, P. Dutta, Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys. B 283, 27鈥?1 (2000) CrossRef
    35. E. Yamada, T. Ota, Effective thermal conductivity of dispersed materials. Heat Mass Transf. 13, 27鈥?7 (1980)
    36. C.W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, 3549鈥?551 (2004) CrossRef
    37. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692鈥?699 (1997) CrossRef
    38. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731鈥?34 (2003) CrossRef
    39. Q.Z. Xue, Model for thermal conductivity of carbon nanotube-based composites. Phys. B Condens. Matter. 368, 302鈥?07 (2005) CrossRef
    40. C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, P. Dutta, Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys. Rev. Lett. 82, 2326鈥?329 (1999) CrossRef
    41. B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665鈥?672 (2003) CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
Nanofluid, a new class of solid/liquid mixtures, provided theoretical challenges because the measured effective thermal conductivity containing a few loadings of nanoparticle (
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.