Thermal anti-oxidation treatment of CrNi-steels as studied by EXAFS in reflection mode: the influence of monosilane additions in the gas atmosphere of a continuous annealing furnace
详细信息    查看全文
  • 作者:D. Lützenkirchen-Hecht (1)
    D. Wulff (2)
    R. Wagner (1)
    R. Frahm (1)
    U. Holl?nder (2)
    H. J. Maier (2)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:49
  • 期:15
  • 页码:5454-5461
  • 全文大小:
  • 参考文献:1. Wimmers OJ, Arnoldy P, Moulijn JA (1986) Determination of the reduction mechanism by temperature-programmed reduction: application to small iron oxide (Fe2O3) particles. J Phys Chem 90:1331-337. doi:10.1021/j100398a025 j100398a025" target="_blank" title="It opens in new window">CrossRef
    2. Jung H, Thompson WJ (1991) Reduction/oxidation of a high loading iron oxide catalyst. J Catal 128:218-30. doi:10.1016/0021-9517(91)90079-J CrossRef
    3. Somorjai GA (1994) Surface chemistry and catalysis, Chap. 7. Wiley-Interscience, New York
    4. Bach FW, M?hwald K, Holl?nder U (2010) Physico-chemical aspects of surface activation during fluxless brazing in shielding-gas furnaces. Key Eng Mater 438:73-0. doi:10.4028/www.scientific.net/KEM.438.73 CrossRef
    5. Bach FW, M?hwald K, Holl?nder U, Roxlau C (2007) SCIB—self-cleaning inert-gas brazing—Ein neues Verfahren zum flussmittelfreien Hartl?ten korrosionsbest?ndiger Konstruktionswerkstoffe, Tagungsband zum 8. Internationalen Kolloquium Hart- und Hochtemperaturl?ten und Diffusionsschwei?en (L?T 2007, Aachen, 19-1 Juni 2007), DVS-Berichte, Nr. 243. DVS-Verlag, Düsseldorf, pp 235-41
    6. Holl?nder U, Bach F-W, M?hwald K (2011) Fluxless brazing of aluminium in a continuous furnace using silane doped process gases. Euro ECAA, conference on aluminium science and technology, 5- October 2011, Bremen, Germany. http://www.dgm.de/past/2011/ecaa/
    7. Edstrom JO (1953) The mechanism of reduction of iron oxides. J Iron Steel Inst 175:289-04
    8. Sastri MVC, Viswanath RP, Viswanath B (1982) Studies on the reduction of iron oxide with hydrogen. Int J Hydrogen Energy 7:951-55. doi:10.1016/0360-3199(82)90163-X CrossRef
    9. Turkdogan ET, Vinters JV (1972) Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Metall Trans 3:1561-574. doi:10.1007/BF02643047 CrossRef
    10. Quets JM, Wadsworth ME, Lewis JR (1960) Kinetics of hydrogen reduction of magnetite. Trans Metal Soc AIME 218:545-50
    11. Tiernan MJ, Barnes PA, Parkes GMB (2001) Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques. J Phys Chem B 105:220-28. doi:10.1021/jp003189+ jp003189+" target="_blank" title="It opens in new window">CrossRef
    12. Corneille JS, He J-W, Goodman DW (1995) Preparation and characterization of ultra-thin iron oxide films on a Mo(100) surface. Surf Sci 338:211-24. doi:10.1016/0039-6028(95)00567-6 CrossRef
    13. Milosev I, Abels JM, Strehblow H-H, Navinsek B, Metikos-Hukovic M (1996) High temperature oxidation of thin CrN coatings deposited on steel. J Vac Sci Technol A 14(4):2527-532. doi:10.1116/1.580014 CrossRef
    14. Abels J-M, Strehblow H-H (1997) A surface analytical approach to the high temperature chlorination behaviour of inconel 600 at 700°C. Corros Sci 39:115-32. doi:10.1016/S0010-938X(96)00112-6 CrossRef
    15. Clauberg E, Uebing C, Grabke HJ (1999) Surface segregation on Fe-5%Cr-%Ni-.1%Sb single crystals. Surf Sci 433-35:617-21. doi:10.1016/S0039-6028(99)00028-X CrossRef
    16. Park E, Hüning B, Spiegel M (2005) Evolution of near-surface concentration profiles of Cr during annealing of Fe-5Cr polycrystalline alloy. Appl Surf Sci 249:127-38. doi:10.1016/j.apsusc.2004.11.078 j.apsusc.2004.11.078" target="_blank" title="It opens in new window">CrossRef
    17. Strehblow H-H, Marcus P (2006) X-ray photoelectron spectroscopy in corrosion research. In: Marcus P, Mansfield F (eds) Corrosion science and engineering. CRC Taylor and Francis, Boca Raton, pp 1-8
    18. Davenport AJ, Sansone M, Bardwell JA, Aldykiewicz AJ Jr, Taube M, Vitus CM (1994) In situ multielement XANES study of formation and reduction of the oxide film on stainless steel. J Electrochem Soc 141:L6–L8. doi:10.1149/1.2054720 CrossRef
    19. Toney MF, Davenport AJ, Oblonsky LJ, Ryan MP, Vitus CM (1997) Atomic structure of the passive oxide film formed on iron. Phys Rev Lett 79:4282-285. doi:10.1103/PhysRevLett.79.4282 CrossRef
    20. Renaud G (1998) Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering. Surf Sci Rep 32:5-0. doi:10.1016/S0167-5729(98)00005-3 CrossRef
    21. Koningsberger D, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York
    22. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359-69. doi:10.1103/PhysRev.95.359 CrossRef
    23. Heald SM, Chen H, Tranquada JM (1988) Glancing-angle extended X-ray-absorption fine structure and reflectivity studies of interfacial regions. Phys Rev B 38:1016-026. doi:10.1103/PhysRevB.38.1016 CrossRef
    24. Hüppauff M, Lengeler B (1993) Valency and structure of iridium in anodic iridium oxide films. J Electrochem Soc 140:598-02. doi:10.1149/1.2056127 CrossRef
    25. Lützenkirchen-Hecht D, Wagemaker M, Keil P, van Well AA, Frahm R (2003) Ex situ reflection mode EXAFS at the Ti K-edge of lithium intercalated TiO2 rutile. Surf Sci 538:10-2. doi:10.1016/S0039-6028(03)00722-2 CrossRef
    26. Barrett NT, Gibson PN, Greaves GN, Mackle P, Roberts KJ, Sacchi M (1989) ReflEXAFS investigations of the local atomic structure around Fe during the oxidation of stainless steel. J Phys D 22:542-46. doi:10.1088/0022-3727/22/4/012 CrossRef
    27. Tolan M, Weis T, Wille K, Westphal C (2003) DELTA: synchrotron light in nordrhein-westfalen. Synchrotron Rad News 16:9-1. doi:10.1080/08940880308603005 CrossRef
    28. Lützenkirchen-Hecht D, Wagner R, Szillat S, Hüsecken AK, Istomin K, Pietsch U, Frahm R (2014) The multi-purpose hard X-ray beamline BL10 at the DELTA storage ring. J Synchrotron Rad 21. doi:10.1107/S1600577514006705
    29. Martens G, Rabe P (1981) The extended X-ray absorption fine structure in the reflectivity at the K edge of Cu. J Phys C 14:1523-534. doi:10.1088/0022-3719/14/10/020 CrossRef
    30. Pizzini S, Roberts KJ, Greaves GN, Harris N, Moore P, Pantos E, Oldman RJ (1989) Instrumentation for glancing angle X-ray absorption spectroscopy on the synchrotron radiation source. Rev Sci Instrum 60:2525-528. doi:10.1063/1.1140719 CrossRef
    31. Poumellec B, Cortes R, Lagnel F, Tourillon G (1989) A new method to extract the X-ray absorption fine structures from the reflectivity spectra: application to the study of (Ti, Nb)O2 amorphous solid solutions. Physica B 158:282-83. doi:10.1016/0921-4526(89)90286-X CrossRef
    32. Borthen P, Strehblow H-H (1995) X-ray reflectivity fine structure from homogeneous materials in the hard-energy range. J Phys Condens Mater 7:3779-787. doi:10.1088/0953-8984/7/19/012 CrossRef
    33. Oddershede J, Christiansen TL, Stahl K, Somers MAJ (2008) EXAFS investigation of low temperature nitrided stainless steel. J Mater Sci 43:5358-367. doi:10.1007/s10853-008-2791-y CrossRef
    34. Lützenkirchen-Hecht D, Strehblow H-H (2006) The anodic oxidation of silver in 1?M NaOH: electrochemistry, ex situ XPS and in situ X-ray absorption spectroscopy. Surf Interface Anal 38:686-90. doi:10.1002/sia.2188 CrossRef
  • 作者单位:D. Lützenkirchen-Hecht (1)
    D. Wulff (2)
    R. Wagner (1)
    R. Frahm (1)
    U. Holl?nder (2)
    H. J. Maier (2)

    1. Fachbereich C–Physik, Bergische Universit?t Wuppertal, Gau?str. 20, 42097, Wuppertal, Germany
    2. Institut für Werkstoffkunde, Leibniz Universit?t Hannover, An der Universit?t 2, 30823, Garbsen, Germany
  • ISSN:1573-4803
文摘
Surface sensitive, reflection mode EXAFS spectroscopy at the Cr and Fe K-edges was used to study the surfaces of stainless steel (EU alloy grade 1.4301 X5CrNi18-10) after different heat treatments. The thermal treatments were performed in a conveyor belt furnace at temperatures between 600 and 900?°C in different gas atmospheres containing inert carrier gases (N2 or Ar) and different additives such as hydrogen (H2) and monosilane (SiH4). The ex-situ EXAFS results show that the iron and chromium in the steel can only be reduced to a metallic state, if SiH4 was used as a reducing additive for temperatures of 900?°C. Lower temperatures and process atmospheres without silane always result in strongly oxidized steel surfaces.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.