Helical Flow and Transient Solute Dilution in Porous Media
详细信息    查看全文
  • 作者:Gabriele Chiogna ; Olaf A. Cirpka ; Paulo A. Herrera
  • 关键词:Anisotropic porous media ; Helical flow ; Flow topology ; Solute dilution
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:111
  • 期:3
  • 页码:591-603
  • 全文大小:3,096 KB
  • 参考文献:Bakker, M., Hemker, K.: Analytic solutions for groundwater whirls in box-shaped, layered anisotropic aquifers. Adv. Water Res. 27, 1075–1086 (2004)CrossRef
    Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
    Chiogna, G., Cirpka, O.A., Rolle, M., Bellin, A.: Helical flow in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. 51, 261–280 (2015)
    Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M.: Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39(20), L20405 (2012)
    Chiogna, G., Eberhardt, C., Grathwohl, P., Cirpka, O.A., Rolle, M.: Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments. Environ. Sci. Technol. 44(2), 688–693 (2010)CrossRef
    Chiogna, G., Rolle, M., Bellin, A., Cirpka, O.A.: Helicity and flow topology in three-dimensional anisotropic porous media. Adv. Water Resour. 73, 134–143 (2014)CrossRef
    Chiogna, G., Bellin, A.: Analytical solution for reactive solute transport considering incomplete mixing within a reference elementary volume. Water Resour. Res. 49, 2589–2600 (2013)CrossRef
    Cirpka, O.A., Chiogna, G., Rolle, M., Bellin, A.: Transverse mixing in three-dimensional nonstationary anisotropicheterogeneous porous media. Water Resour. Res. 51(1), 241–260 (2015)
    Cleary, P.W., Monaghan, J.J.: Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 148(1), 227–264 (1999)CrossRef
    de Barros, F., Dentz, M., Koch, J., Nowak, W.: Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39(L08), 404 (2012)
    deAnna, P., Dentz, M., Tartakovsky, A., LeBorgne, T.: The filamentary structure of mixing fronts and its control on reaction kinetics in porous media flows. Geophys. Res. Lett. 41(13), 4586–4593 (2014)
    Ding, D., Benson, D.A., Paster, A., Bolster, D.: Modeling bimolecular reactions and transport in porous media via particle tracking. Adv. Water Resour. 53, 56–65 (2013)CrossRef
    Duplay, R., Sen, P.N.: Influence of local geometry and transition to dispersive regime by mechanical mixing in porous media. Phys. Rev. E 70(066), 309 (2004)
    Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192–7205 (1998)CrossRef
    Gao, Y., Zang, X., Rama, P., Liu, Y., Chen, R., Ostadi, H., Jiang, K.: Calculating the anisotropic permeability of porous media using the lattice Boltzmann method and X-ray computed tomography. Transp. Porous Med. 92, 457–472 (2012)CrossRef
    Ginzburg, I., dHumires, D.: Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers. Adv. Water Resour. 30(11), 2202–2234 (2007)CrossRef
    Guo, P.: Dependency of tortuosity and permeability of porous media on directional distribution of pore voids. Transp. Porous Media 95(2), 285–303 (2012)CrossRef
    Hemker, K., van den Berg, E., Bakker, M.: Ground water whirls. Ground Water 42(2), 234–242 (2004)CrossRef
    Hemker, K., Bakker, M.: Analytical solutions for whirling groundwater flow in two-dimensional heterogeneous anisotropic aquifers. Water Resour. Res. 42(W12), 419 (2006)
    Herrera, P.A., Massabó, M., Beckie, R.D.: A meshless method to simulate solute transport in heterogeneous porous media. Adv. Water Resour. 32(3), 413–429 (2009)CrossRef
    Herrera, P.A., Valocchi, A.J., Beckie, R.D.: A multidimensional streamline-based method to simulate reactive solute transport in heterogeneous porous media. Adv. Water Resour. 33(7), 711–727 (2010)CrossRef
    Hidalgo, J.J., Fe, J., Cueto-Felgueroso, L., Juanes, R.: Scaling of convective mixing in porous media. Phys. Rev. Lett. 109(264), 503 (2012)
    Higler, A., Krishna, R., Ellenberger, J., Taylor, R.: Counter-current operation of a structured catalytically packed-bed reactor: Liquid phase mixing and mass transfer. Chem. Eng. Sci. 54, 5145–5152 (1999)CrossRef
    Holm, D.D., Kimura, Y.: Zero-helicity Lagrangian kinematics of three-dimensional advection. Phys. Fluids A 3(5), 1033–1038 (1991)CrossRef
    Hsieh, P., Neuman, S., Stiles, G., Simpson, E.: Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media 2. Methodology and application to fractured rocks. Water Resour. Res. 21(11), 1667–1676 (1985a)CrossRef
    Hsieh, P.A., Neuman, S.P., Stiles, G.K., Simpson, E.S.: Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks. Water Resour. Res. 21(11), 1667–1676 (1985b)CrossRef
    Hyman, J., Winter, C.: Hyperbolic regions in flows through three-dimensional pore structures. Phys. Rev. E 88(063), 014 (2013)
    Indelman, P., Dagan, G.: Upscaling of permeability of anisotropic heterogeneous formations: 1. The general framework. Water Resour. Res. 29(4), 917–923 (1993)CrossRef
    Kelley, D.H., Ouellette, N.T.: Separating stretching from folding in fluid mixing. Nat. Phys. 7, 477–480 (2011)CrossRef
    Kim, J.H., Ochoa, J., Whitaker, S.: Diffusion in anisotropic porous media. Transp. Porous Media 2(4), 327–356 (1987)CrossRef
    Kitanidis, P.K.: The concept of the dilution index. Water Resour. Res. 30(7), 2011–2026 (1994)CrossRef
    Koza, Z., Matyka, M., Khalili, A.: Finite-size anisotropy in statistically uniform porous media. Phys. Rev. E 79(066), 306 (2009)
    Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., de Dreuzy, J.R., Davy, P.: Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33(12), 1468–1475 (2010)CrossRef
    Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110(204), 501 (2013)
    Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458–498 (2015)CrossRef
    Lester, D., Metcalfe, G., Trefry, M.: Is chaotic advection inherent to porous media flow? Phys. Rev. Lett. 111(174), 101 (2013)
    Matyca, M., Koza, Z., Golembiewski, J.: Anisotropy of flow in stochastically generated porous media. Phys. Rev. E 88(023018) (2013)
    Moffatt, H.K.: Helicity and singular structures in fluid dynamics. PNAS 111(10), 3663–3670 (2014)CrossRef
    Moffatt, H.K., Tsinober, A.: Helicity in laminar and turbulent flow. Ann. Rev. Fluid Mech. 24(1), 281–312 (1992)CrossRef
    Neuman, S.P., Walter, G.R., Bentley, H.W., Ward, J.J., Gonzalez, D.D.: Determination of horizontal aquifer anisotropy with three wells. Ground Water 22(1), 66–72 (1984)CrossRef
    Ottino, J.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge (1989)
    Pilotti, M.: Generation of realistic porous media by grains sedimentation. Transp. Porous Media 33(3), 257–278 (1998)CrossRef
    Rolle, M., Hochstetler, D., Chiogna, G., Kitanidis, P.K., Grathwohl, P.: Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transp. Porous Media 93(3), 347–362 (2012)CrossRef
    Rolle, M., Chiogna, G., Hochstetler, D.L., Kitanidis, P.K.: On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale. J. Contam. Hydrol. 153, 51–68 (2013)CrossRef
    Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)CrossRef
    Scheven, U.M.: Pore-scale mixing and transverse dispersivity of randomly packed monodisperse spheres. Phys. Rev. Lett. 110(214), 504 (2013)
    Sposito, G.: Steady groundwater flow as a dynamical system. Water Resour. Res. 20(8), 2395–2401 (1994)CrossRef
    Sposito, G.: Topological groundwater hydrodynamics. Adv. Water Res. 24, 793–801 (2001)CrossRef
    Stauffer, F.: Impact of highly permeable sediment units with inclined bedding on solute transport in aquifers. Adv. Water Res. 30, 2194–2201 (2007)CrossRef
    Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezi, I., Stone, H.A., Whitesides, G.M.: Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002)CrossRef
    Tartakovsky, A.M., Tartakovsky, D.M., Meakin, P.: Stochastic langevin model for flow and transport in porous media. Phys. Rev. Lett. 101(044), 502 (2008)
    Tartakovsky, A., Tartakovsky, G., Scheibe, T.: Effects of incomplete mixing on multicomponent reactive transport. Adv. Water Res. 32(11), 1674–1679 (2009)CrossRef
    Toussaint, V., Carrire, P., Raynal, F.: A numerical Eulerian approach to mixing by chaotic advection. Phys. Fluids (1994-present) 7(11), 2587–2600 (1995)
    van Baten, J., Ellenberger, J., Krishna, : Radial and axial dispersion of the liquid phase within a katapak-s structure: experiments vs. CFD simulations. Chem. Eng. Sci. 56, 813–821 (2001)CrossRef
    Villermaux, E., Stroock, A.D., Stone, H.A.: Bridging kinematics and concentration content in a chaotic micromixer. Phys. Rev. E 77(015), 301 (2008)
    Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115(194), 502 (2015)
    Zhu, Y., Fox, P.J.: Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J. Comput. Phys. 182(2), 622–645 (2002)CrossRef
  • 作者单位:Gabriele Chiogna (1) (2)
    Olaf A. Cirpka (1)
    Paulo A. Herrera (3) (4)

    1. Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
    2. Faculty for Civil, Geo and Environmental Engineering, Technical University of Munich, Darcistrasse 21, 80333, Munich, Germany
    3. Department of Civil Engineering, University of Chile, Av. Blanco Encalada 2002, 8370449, Santiago, Chile
    4. Andean Geothermal Center of Excellence, University of Chile, Plaza Ercilla 803, 8370450, Santiago, Chile
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Helical flow can occur in porous media if the hydraulic conductivity tensor is anisotropic. We study the structure of steady-state flow fields in three-dimensional anisotropic porous media formed by two homogeneous layers, one of which is anisotropic. We simulate transient transport of a conservative scalar in such flow fields by a hybrid streamline/smoothed particle hydrodynamics method and analyze dilution. We use stretching and folding metrics to characterize the flow field and the dilution index of a conservative scalar divided by the volume of the domain to quantify plume dilution. Based on the results of detailed numerical simulations, we conclude that nonlinear deformation triggers dilution and that plume dilution is controlled by two parameters: the contrast between the principal directions of the anisotropic layer, and the orientation of the hydraulic conductivity tensor with respect to the main flow direction. Furthermore, we show that in this kind of flow fields transverse dispersion is responsible for an increase in plume dilution, while the effect of longitudinal dispersion is negligible.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.