Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage
详细信息    查看全文
  • 作者:Mathias Possemiers ; Marijke Huysmans ; Okke Batelaan
  • 关键词:Belgium ; Heterogeneity ; Geostatistics ; Heat transport ; ATES
  • 刊名:Hydrogeology Journal
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:23
  • 期:5
  • 页码:971-981
  • 全文大小:3,780 KB
  • 参考文献:Andrews CB (1978) The impact of the use of heat pumps on ground-water temperatures. Ground Water 16:437-43View Article
    Bayer P, Saner D, Bolay S et al (2012) Greenhouse gas emission savings of ground source heat pump systems in Europe: a review. Renew Sustain Energy Rev 16:1256-267. doi:10.-016/?j.?rser.-011.-9.-27 View Article
    Bonte M (2013) Impacts of shallow geothermal energy on groundwater quality: a hydrochemical and geomicrobial study of the effects of ground source heat pumps and aquifer thermal energy storage. PhD Thesis, VU Amsterdam, The Netherlands, 175 pp
    Bonte M, Stuyfzand PJ, Van Den Berg GA, Hijnen WAM (2011) Effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from the Netherlands. Water Sci Technol 63:1922-931View Article
    Bridger DW, Allen DM (2010) Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES). Can Geotech J 47:96-15. doi:10.-139/?T09-078 View Article
    Bridger DW, Allen DM (2014) Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system. Hydrogeol J 22:233-50. doi:10.-007/?s10040-013-1049-1 View Article
    Caers J, Zhang T (2004) Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into Stanford University, Stanford Center for Reservoir Forecasting. Intergration outcrop Mod. Analog data Reserv. Model, AAPG Mem. 80, AAPG, Tulsa, OK, pp 383-94
    Caljé RJ (2010) Future use of Aquifer Thermal Energy Storage below the historic centre of Amsterdam. MSc Thesis, TU Delft, The Netherlands, 79 pp
    Chiang W-H (2010) Processing MODFLOW: an integrated modeling environment for the simulation of groundwater flow, transport and reactive processes. Simcore. https://?www.?simcore.?com . March 2015
    Comunian A, Renard P, Straubhaar J, Bayer P (2011) Three-dimensional high resolution fluvio-glacial aquifer analog, part 2: geostatistical modeling. J Hydrol 405:10-3. doi:10.-016/?j.?jhydrol.-011.-3.-37 View Article
    De Marsily G (1986) Quantitative hydrogeology. Academic, Orlando, FL, 440 pp
    dell’Arciprete D, Bersezio R, Felletti F et al (2011) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20:299-11. doi:10.-007/?s10040-011-0808-0 View Article
    Ferguson G (2007) Heterogeneity and thermal modeling of ground water. Ground Water 45:485-90. doi:10.-111/?j.-745-6584.-007.-0323.?x View Article
    Fossoul F, Orban P, Dassargues A (2011) Numerical simulation of heat transfer associated with low enthalpy geothermal pumping in an alluvial aquifer. Geol Belg 14:45-4
    Gao Q, Li M, Yu M et al (2009) Review of development from GSHP to UTES in China and other countries. Renew Sustain Energy Rev 13:1383-394. doi:10.-016/?j.?rser.-008.-9.-12 View Article
    Gringarten AC, Sauty JP (1975) A theoretical study of heat extraction from aquifers with uniform regional flow. J Geophys Res 80:4956. doi:10.-029/?JB080i035p04956 View Article
    H?hnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914-25. doi:10.-016/?j.?enpol.-013.-4.-40 View Article
    Halford KJ, Hanson RT (2002) User guide for the drawdown-limited, multi-node well (MNW) package for the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model, Versions MODFLOW-96 and MODFLOW-2000. US Geol Surv Open-File Rep 2002-293, 33 pp
    Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92, 121 pp
    Hecht-Méndez J, Molina-Giraldo N, Blum P, Bayer P (2010) Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Ground Water 48:741-56. doi:10.-111/?j.-745-6584.-010.-0678.?x View Article
    Houthuys R (1990) Afzettingstructuur van de zanden van Brussel. Aardkundige Mededelingen [Comparative study of the depositional structure of tidal sands from the Eocene and the current Flemish sand bars], vol 5. Leuven University Press, Leuven, The Netherlands, 137 pp
    Houthuys R (2011) A sedimentary model of the Brussels Sands, Eocene, Belgium. Geol Belg 14:55-4
    Hsieh PA, Freckleton JR (1993) Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open-File Rep 92-477, 32 pp
    Hu LY, Chugunova T (2008) Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour Res. doi:10.-029/-008WR006993
    Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium)
  • 作者单位:Mathias Possemiers (1)
    Marijke Huysmans (1) (2)
    Okke Batelaan (1) (2) (3)

    1. Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Heverlee, Belgium
    2. Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
    3. School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-0157
文摘
Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-.6?%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-0.2?%) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.