Two-step phase transition via in situ hydrolysis of thermosensitive polymeric micelles with acid-labile core
详细信息    查看全文
  • 作者:Qianling Cui (1)
    Guizhi Shen (1)
    Feipeng Wu (1)
    Erjian Wang (1)
  • 关键词:Stimuli ; responsive polymers ; Diblock copolymers ; Microstructure ; Hydrogen bonding ; Phase behavior
  • 刊名:Colloid & Polymer Science
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:291
  • 期:10
  • 页码:2469-2473
  • 全文大小:178KB
  • 参考文献:1. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173鈥?222 CrossRef
    2. Mori T, Nakashima M, Fukuda Y, Minagawa K, Tanaka M, Maeda Y (2006) Soluble-insoluble-soluble transitions of aqueous poly( / N-vinylacetamide-co-acrylic acid) solutions. Langmuir 22:4336鈥?342 CrossRef
    3. Xu J, Luo S, Shi W, Liu S (2006) Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 22:989鈥?97 CrossRef
    4. Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43:6485鈥?494 CrossRef
    5. Kot E, Bismarck A (2010) Polyacrylamide containing weak temperature labile azo links in the polymer backbone. Macromolecules 43:6469鈥?475 CrossRef
    6. Sugihara S, Kanaoka S, Aoshima S (2005) Double thermosensitive diblock copolymers of vinyl ethers with pendant oxyethylene groups: unique physical gelation. Macromolecules 38:1919鈥?927 CrossRef
    7. Rossi NAA, Zou YQ, Scott MD, Kizhakkedathu JN (2008) RAFT synthesis of acrylic copolymers containing poly(ethylene glycol) and dioxolane functional groups: toward well-defined aldehyde containing copolymers for bioconjugation. Macromolecules 41:5272鈥?282 CrossRef
    8. Garg SM, Xiong XB, Lu C, Lavasanifar A (2010) Application of click chemistry in the preparation of poly(ethylene oxide)-block-poly( / 蔚-caprolactone) with hydrolyzable cross-links in the micellar core. Macromolecules 44:2058鈥?066 CrossRef
    9. Mizuntani M, Satoh K, Kamigaito M (2011) Degradable poly( / N-isopropylacrylamide) with tunable thermosensitivity by simultaneous chain- and step-growth radical polymerization. Macromolecules 44:2382鈥?386 CrossRef
    10. Bokiasa G, Staikosa G, Iliopoulos I (2000) Solution properties and phase behaviour of copolymers of acrylic acid with / N-isopropylacrylamide: the importance of the intrachain hydrogen bonding. Polymer 41:7399鈥?405 CrossRef
    11. Monti F, Fu SY, Iliopoulos I, Cloitre M (2008) Doubly responsive polymer-microgel composites: rheology and structure. Langmuir 24:11474鈥?1482 CrossRef
    12. Shan J, Chen J, Nuopponen M, Tenhu H (2004) Two phase transitions of poly( / N-isopropylacrylamide) brushes bound to gold nanoparticles. Langmuir 20:4671鈥?676 CrossRef
    13. Rezende CA, Shan J, Lee LT, Zalczer G, Tenhu H (2009) Tuning the structure of thermosensitive gold nanoparticle monolayers. J Phys Chem B 113:9786鈥?794 CrossRef
    14. Chen HW, Zhang QJ, Li JF, Ding YW, Zhang GZ, Wu C (2005) Formation of mesoglobular phase of PNIPAM-g-PEO copolymer with a high PEO content in dilute solutions. Macromolecules 38:8045鈥?050 CrossRef
    15. Elliott IG, Kuhl TL, Faller R (2010) Molecular simulation study of the structure of high density polymer brushes in good solvent. Macromolecules 43:9131鈥?138 CrossRef
    16. Keerl M, Pedersen JS, Richtering W (2009) Temperature sensitive copolymer microgels with nanophase separated structure. J Am Chem Soc 131:3093鈥?097 CrossRef
    17. Berndt I, Pedersen JS, Richtering W (2005) Structure of multiresponsive 鈥渋ntelligent鈥?core-shell microgels. J Am Chem Soc 127:9372鈥?373 CrossRef
    18. Cheng H, Yuan X, Sun X, Li K, Zhou Y, Yan D (2010) Effect of degree of branching on the self-assembly of amphiphilic hyperbranched multiarm copolymers. Macromolecules 43:1143鈥?147 CrossRef
    19. Haba Y, Kojima C, Harada A, Kono K (2006) Control of temperature-sensitive properties of poly(amidoamine) dendrimers using peripheral modification with various alkylamide groups. Macromolecules 39:7451鈥?453 CrossRef
    20. Haba Y, Kojima C, Harada A, Kono K (2007) Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups. Angew Chem Int Ed 46:234鈥?37 CrossRef
    21. Haba Y, Harada A, Takagishi T, Kono K (2004) Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. J Am Chem Soc 126:12760鈥?2761 CrossRef
    22. Tsuji S, Kawaguchi H (2006) Effect of graft chain length and structure design on temperature-sensitive hairy particles. Macromolecules 39:4338鈥?344 CrossRef
    23. Hu TJ, Wu C (1999) Clustering induced collapse of a polymer brush. Phys Rev Lett 83:4105鈥?107 CrossRef
    24. Plummer R, Hill DJT, Whittaker AK (2006) Solution properties of star and linear poly( / N-isopropylacrylamide). Macromolecules 39:8379鈥?388 CrossRef
    25. Ishida N, Biggs S (2010) Effect of grafting density on phase transition behavior for poly( / N-isopropylacryamide) brushes in aqueous solutions studied by AFM and QCM-D. Macromolecules 43:7269鈥?276 CrossRef
    26. Wu T, Zhang Y, Wang X, Liu S (2008) Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly( / N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem Mater 20:101鈥?09 CrossRef
    27. Cui Q, Wu F, Wang E (2011) Novel amphiphilic diblock copolymers bearing acid-labile oxazolidine moieties: synthesis, self-assembly and responsive behavior in aqueous solution. Polymer 52:1755鈥?765 CrossRef
    28. Cui Q, Wu F, Wang E (2011) Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG- / b-PADMO) controlled via self-assembled microstructure. J Phys Chem B 115:5913鈥?922 CrossRef
    29. Wagner M, Brochard-Wyart F, Hervet H, de Gennes PG (1993) Collapse of polymer brushes induced by / n-clusters. Colloid Polym Sci 271:621鈥?28 CrossRef
    30. Hu T, Wu C (2001) Grafting density induced stretching and collapse of tethered poly(ethylene oxide) chains on a thermally sensitive microgel. Macromolecules 34:6802鈥?805 CrossRef
    31. Saeki S, Kuwahara N, Nakata M, Kaneko M (1976) Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer 17:685鈥?89 CrossRef
    32. Steinschulte AA, Schulte B, Erberich M, Borisov OV, Plamper FA (2012) Unimolecular Janus micelles by microenvironment-induced, internal complexation. ACS Macro Lett 1:504鈥?07 CrossRef
    33. Salgado-Rodr铆guez R, Licea-Claver铆e A, Arndt KF (2004) Random copolymers of / N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. Eur Polym J 40:1931鈥?946 CrossRef
    34. Burova TV, Grinberg NV, Grinberg VY, Kalinina EV, Lozinsky VI, Aseyev VO, Holappa S, Tenhu H, Khokhlov AR (2005) Unusual conformational behavior of complexes of poly( / N-isopropylacrylamide) with poly(methacrylic acid). Macromolecules 38:1292鈥?299 CrossRef
    35. Xiao X, Chu L, Chen W, Zhu J (2005) Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer 46:3199鈥?209 CrossRef
    36. Chiang W, Hsu Y, Chern C, Chiu H (2011) Two-stage thermally induced stable colloidal assemblies from PAAc/PNIPAAm/mPEG graft copolymer in water. Polymer 52:2422鈥?429 CrossRef
  • 作者单位:Qianling Cui (1)
    Guizhi Shen (1)
    Feipeng Wu (1)
    Erjian Wang (1)

    1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People鈥檚 Republic of China
  • ISSN:1435-1536
文摘
This communication reports thermoresponsive diblock copolymer micelles composed of a hydrophilic poly(ethylene glycol) (PEG) shell with temperature-responsive functionality and an acid-labile, hydrophobic poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO) core. Because of the partial in situ hydrolysis of these micelles, an interesting two-step phase transition occurs, exhibiting two separate cloud points. This can be attributed to the dual characters displayed by poly(2-hydroxyethyl acrylamide) (PHEAM), the hydrolysis product of PADMO in an acid medium. The formation of hydrogen bonding between PEG and PHEAM enhances the hydrophobicity of PEG chains and promotes the phase transition that takes place at a lower temperature than before. On the other hand, generation of water-soluble PHEAM increases the hydrophilicity of the whole micelles and requires higher temperature that induces dehydration of these micelles. This finding could help us better understand the relationship between micellar microstructure and thermosensitive behaviors.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.