Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin)
详细信息    查看全文
  • 作者:Kamini Singh (17) (24)
    Arishya Sharma (17) (22)
    Maria C Mir (18)
    Judith A Drazba (19)
    Warren D Heston (17)
    Cristina Magi-Galluzzi (18) (20)
    Donna Hansel (18) (25)
    Brian P Rubin (18) (21)
    Eric A Klein (20)
    Alexandru Almasan (17) (23)

    17. Department of Cancer Biology
    ; Lerner Research Institute ; Cleveland Clinic ; Cleveland ; OH ; 44195 ; USA
    24. Memorial Sloan-Kettering Cancer Center
    ; 417 E68th Street ; New York ; NY ; 10065 ; USA
    22. Department of Biological
    ; Geological ; and Environmental Science ; Cleveland State University ; Cleveland ; OH ; USA
    18. Department of Anatomic Pathology
    ; Taussig Cancer Institute ; Cleveland Clinic ; Cleveland ; OH ; 44195 ; USA
    19. Imaging Core
    ; Lerner Research Institute ; Cleveland Clinic ; Cleveland ; OH ; 44195 ; USA
    20. Glickman Urological and Kidney Institute
    ; Cleveland Clinic ; Cleveland ; OH ; 44195 ; USA
    25. Department of Pathology
    ; University of California ; San Diego ; 9500 Gilman Drive ; La Jolla ; CA ; 92093 ; USA
    21. Department of Molecular Genetics
    ; Lerner Research Institute ; Cleveland Clinic Cleveland ; Cleveland ; OH ; 44195 ; USA
    23. Department of Radiation Oncology
    ; Taussig Cancer Institute ; Cleveland Clinic ; 9500 Euclid Avenue ; Cleveland ; OH ; 44195 ; USA
  • 关键词:Autophagy ; p62/SQSTM1 ; Caspase ; 8 ; Prostate cancer ; Apo2L/TRAIL ; Dulanermin
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,774 KB
  • 参考文献:1. Kroemer, G, Marino, G, Levine, B (2010) Autophagy and the integrated stress response. Mol Cell 40: pp. 280-293 CrossRef
    2. Kourtis, N, Tavernarakis, N (2009) Autophagy and cell death in model organisms. Cell Death Differ 16: pp. 21-30 CrossRef
    3. Kroemer, G, Jaattela, M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5: pp. 886-897 CrossRef
    4. Nakatogawa, H, Ichimura, Y, Ohsumi, Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130: pp. 165-178 CrossRef
    5. Xie, Z, Nair, U, Klionsky, DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19: pp. 3290-3298 CrossRef
    6. Itakura, E, Mizushima, N (2011) p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192: pp. 17-27 CrossRef
    7. Almasan, A, Ashkenazi, A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14: pp. 337-348 CrossRef
    8. Gonzalvez, F, Ashkenazi, A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29: pp. 4752-4765 CrossRef
    9. Mora, R, Abschuetz, A, Kees, T, Dokic, I, Joschko, N, Kleber, S, Geibig, R, Mosconi, E, Zentgraf, H, Martin-Villalba, A, Regnier-Vigouroux, A (2009) TNF-alpha- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia 57: pp. 561-581 CrossRef
    10. Herrero-Martin, G, Hoyer-Hansen, M, Garcia-Garcia, C, Fumarola, C, Farkas, T, Lopez-Rivas, A, Jaattela, M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28: pp. 677-685 CrossRef
    11. Chhipa, RR, Wu, Y, Ip, C (2011) AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal 23: pp. 1466-1472 CrossRef
    12. Wu, Z, Chang, PC, Yang, JC, Chu, CY, Wang, LY, Chen, NT, Ma, AH, Desai, SJ, Lo, SH, Evans, CP, Lam, KS, Kung, HJ (2010) Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer 1: pp. 40-49 CrossRef
    13. Jin, Z, Li, Y, Pitti, R, Lawrence, D, Pham, VC, Lill, JR, Ashkenazi, A (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137: pp. 721-735 CrossRef
    14. Wagner, KW, Punnoose, EA, Januario, T, Lawrence, DA, Pitti, RM, Lancaster, K, Lee, D, von Goetz, M, Yee, SF, Totpal, K, Huw, L, Katta, V, Cavet, G, Hymowitz, SG, Amler, L, Ashkenazi, A (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13: pp. 1070-1077 CrossRef
    15. Hughes, MA, Harper, N, Butterworth, M, Cain, K, Cohen, GM, MacFarlane, M (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35: pp. 265-279 CrossRef
    16. Spencer, SL, Gaudet, S, Albeck, JG, Burke, JM, Sorger, PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459: pp. 428-432 CrossRef
    17. Pankiv, S, Lamark, T, Bruun, JA, Overvatn, A, Bjorkoy, G, Johansen, T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285: pp. 5941-5953 CrossRef
    18. Kirkin, V, McEwan, DG, Novak, I, Dikic, I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34: pp. 259-269 CrossRef
    19. Ray, S, Shyam, S, Fraizer, GC, Almasan, A (2007) S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells. Mol Cancer Ther 6: pp. 1368-1378 CrossRef
    20. Ray, S, Almasan, A (2003) Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res 63: pp. 4713-4723
    21. Kabeya, Y, Mizushima, N, Ueno, T, Yamamoto, A, Kirisako, T, Noda, T, Kominami, E, Ohsumi, Y, Yoshimori, T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: pp. 5720-5728 CrossRef
    22. Bjorkoy, G, Lamark, T, Brech, A, Outzen, H, Perander, M, Overvatn, A, Stenmark, H, Johansen, T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171: pp. 603-614 CrossRef
    23. Jaakkola, PM, Pursiheimo, JP (2009) p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy 5: pp. 410-412 CrossRef
    24. Cheong, H, Lu, C, Lindsten, T, Thompson, CB (2012) Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol 30: pp. 671-678 CrossRef
    25. Rubinsztein, DC, Codogno, P, Levine, B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11: pp. 709-730 CrossRef
    26. Han, J, Hou, W, Goldstein, LA, Lu, C, Stolz, DB, Yin, XM, Rabinowich, H (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283: pp. 19665-19677 CrossRef
    27. Yang, ZJ, Chee, CE, Huang, S, Sinicrope, FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10: pp. 1533-1541 CrossRef
    28. Ziparo, E, Petrungaro, S, Marini, ES, Starace, D, Conti, S, Facchiano, A, Filippini, A, Giampietri, C (2013) Autophagy in prostate cancer and androgen suppression therapy. Int J Mol Sci 14: pp. 12090-12106 CrossRef
    29. Gupta, A, Roy, S, Lazar, AJ, Wang, WL, McAuliffe, JC, Reynoso, D, McMahon, J, Taguchi, T, Floris, G, Debiec-Rychter, M, Schoffski, P, Trent, JA, Debnath, J, Rubin, BP (2010) Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A 107: pp. 14333-14338 CrossRef
    30. Singh, K, Matsuyama, S, Drazba, JA, Almasan, A (2012) Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 8: pp. 236-257 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Macroautophagy is a catabolic process that can mediate cell death or survival. Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment (TR) is known to induce autophagy. Here we investigated whether SQSTM1/p62 (p62) overexpression, as a marker of autophagic flux, was related to aggressiveness of human prostate cancer (PCa) and whether autophagy regulated the treatment response in sensitive but not resistant PCa cell lines. Methods Immunostaining and immunoblotting analyses of the autophagic markers p62 [in PCa tissue microarrays (TMAs) and PCa cell lines] and LC3 (in PCa cell lines), transmission electron microscopy, and GFP-mCherry-LC3 were used to study autophagy induction and flux. The effect of autophagy inhibition using pharmacologic (3-methyladenine and chloroquine) and genetic [(short hairpin (sh)-mediated knock-down of ATG7 and LAMP2) and small interfering (si)RNA-mediated BECN1 knock-down] approaches on TR-induced cell death was assessed by clonogenic survival, sub-G1 DNA content, and annexinV/PI staining by flow cytometry. Caspase-8 activation was determined by immunoblotting. Results We found that increased cytoplasmic expression of p62 was associated with high-grade PCa, indicating that autophagy signaling might be important for survival in high-grade tumors. TR-resistant cells exhibited high autophagic flux, with more efficient clearance of p62-aggregates in four TR-resistant PCa cell lines: C4-2, LNCaP, DU145, and CWRv22.1. In contrast, autophagic flux was low in TR-sensitive PC3 cells, leading to accumulation of p62-aggregates. Pharmacologic (chloroquine or 3-methyladenine) and genetic (shATG7 or shLAMP2) inhibition of autophagy led to cell death in TR-resistant C4-2 cells. shATG7-expressing PC3 cells, were less sensitive to TR-induced cell death whereas those shLAMP2-expressing were as sensitive as shControl-expressing PC3 cells. Inhibition of autophagic flux using chloroquine prevented clearance of p62 aggregates, leading to caspase-8 activation and cell death in C4-2 cells. In PC3 cells, inhibition of autophagy induction prevented p62 accumulation and hence caspase-8 activation. Conclusions We show that p62 overexpression correlates with advanced stage human PCa. Pharmacologic and genetic inhibition of autophagy in PCa cell lines indicate that autophagic flux can determine the cellular response to TR by regulating caspase-8 activation. Thus, combining various autophagic inhibitors may have a differential impact on TR-induced cell death.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.