GAP-Seq: a method for identification of DNA palindromes
详细信息    查看全文
  • 作者:Hui Yang (1)
    Natalia Volfovsky (2)
    Alison Rattray (1)
    Xiongfong Chen (2)
    Hisashi Tanaka (3)
    Jeffrey Strathern (1)

    1. Gene Regulation and Chromosome Biology Laboratory
    ; Frederick National Laboratory for Cancer Research ; Cancer Research and Development Center ; Frederick ; MD ; 21702 ; USA
    2. ABCC/ ISP
    ; SAIC-Frederick ; Inc. ; Frederick National Laboratory for Cancer Research ; Frederick ; MD ; 21702 ; USA
    3. Department of Molecular Genetics
    ; Cleveland Clinic Lerner Research Institute ; Cleveland ; Ohio ; 44195 ; USA
  • 关键词:Palindrome ; Gene amplification ; Inversion ; PCR ; GAP ; Seq ; GAPF ; Breakpoint ; MCF7 ; Genome instability ; Cancer ; Human diseases
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:568 KB
  • 参考文献:1. Lewis, SM, Cote, AG (2006) Palindromes and genomic stress fractures: bracing and repairing the damage. DNA Repair (Amst) 5: pp. 1146-1160 CrossRef
    2. Lobachev, KS, Rattray, A, Narayanan, V (2007) Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front Biosci 12: pp. 4208-4220 CrossRef
    3. Inagaki, H, Ohye, T, Kogo, H, Kato, T, Bolor, H, Taniguchi, M, Shaikh, TH, Emanuel, BS, Kurahashi, H (2009) Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 19: pp. 191-198 CrossRef
    4. Leach, DR (1994) Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays 16: pp. 893-900 CrossRef
    5. Tanaka, H, Yao, MC (2009) Palindromic gene amplification鈥揳n evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer 9: pp. 216-224 CrossRef
    6. Kurahashi, H, Inagaki, H, Ohye, T, Kogo, H, Kato, T, Emanuel, BS (2006) Palindrome-mediated chromosomal translocations in humans. DNA Repair (Amst) 5: pp. 1136-1145 CrossRef
    7. Inagaki, H, Ohye, T, Kogo, H, Yamada, K, Kowa, H, Shaikh, TH, Emanuel, BS, Kurahashi, H (2005) Palindromic AT-rich repeat in the NF1 gene is hypervariable in humans and evolutionarily conserved in primates. Hum Mutat 26: pp. 332-342 CrossRef
    8. Lewis, SM, Chen, S, Strathern, JN, Rattray, AJ (2005) New approaches to the analysis of palindromic sequences from the human genome: evolution and polymorphism of an intronic site at the NF1 locus. Nucleic Acids Res 33: pp. e186 CrossRef
    9. Tanaka, H, Bergstrom, DA, Yao, MC, Tapscott, SJ (2005) Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification. Nat Genet 37: pp. 320-327 CrossRef
    10. Zhao, Y, Marotta, M, Eichler, EE, Eng, C, Tanaka, H (2009) Linkage disequilibrium between two high-frequency deletion polymorphisms: implications for association studies involving the glutathione-S transferase (GST) genes. PLoS Genet 5: pp. e1000472 CrossRef
    11. Tanaka, H, Bergstrom, DA, Yao, MC, Tapscott, SJ (2006) Large DNA palindromes as a common form of structural chromosome aberrations in human cancers. Hum Cell 19: pp. 17-23 CrossRef
    12. Guenthoer, J, Diede, SJ, Tanaka, H, Chai, X, Hsu, L, Tapscott, SJ, Porter, PL (2012) Assessment of palindromes as platforms for DNA amplification in breast cancer. Genome Res 22: pp. 232-245 CrossRef
    13. Rattray, AJ, Shafer, BK, Neelam, B, Strathern, JN (2005) A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 19: pp. 1390-1399 CrossRef
    14. Tanaka, H, Cao, Y, Bergstrom, DA, Kooperberg, C, Tapscott, SJ, Yao, MC (2007) Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer. Mol Cell Biol 27: pp. 1993-2002 CrossRef
    15. Soule, HD, Vazguez, J, Long, A, Albert, S, Brennan, M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51: pp. 1409-1416
    16. Kytola, S, Rummukainen, J, Nordgren, A, Karhu, R, Farnebo, F, Isola, J, Larsson, C (2000) Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer 28: pp. 308-317 CrossRef
    17. Rummukainen, J, Kytola, S, Karhu, R, Farnebo, F, Larsson, C, Isola, JJ (2001) Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping. Cancer Genet Cytogenet 126: pp. 1-7 CrossRef
    18. Neve, RM, Chin, K, Fridlyand, J, Yeh, J, Baehner, FL, Fevr, T, Clark, L, Bayani, N, Coppe, JP, Tong, F, Speed, T, Spellman, PT, DeVries, S, Lapuk, A, Wang, NJ, Kuo, WL, Stilwell, JL, Pinkel, D, Albertson, DG, Waldman, FM, McCormick, F, Dickson, RB, Johnson, MD, Lippman, M, Ethier, S, Gazdar, A, Gray, JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: pp. 515-527 CrossRef
    19. Shadeo, A, Lam, WL (2006) Comprehensive copy number profiles of breast cancer cell model genomes. Breast Cancer Res 8: pp. R9 CrossRef
    20. Jonsson, G, Staaf, J, Olsson, E, Heidenblad, M, Vallon-Christersson, J, Osoegawa, K, de Jong, P, Oredsson, S, Ringner, M, Hoglund, M, Borg, A (2007) High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes Cancer 46: pp. 543-558 CrossRef
    21. Huang, J, Wei, W, Zhang, J, Liu, G, Bignell, GR, Stratton, MR, Futreal, PA, Wooster, R, Jones, KW, Shapero, MH (2004) Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 1: pp. 287-299 CrossRef
    22. Volik, S, Raphael, BJ, Huang, G, Stratton, MR, Bignel, G, Murnane, J, Brebner, JH, Bajsarowicz, K, Paris, PL, Tao, Q, Kowbel, D, Lapuk, A, Shagin, DA, Shagina, IA, Gray, JW, Cheng, JF, de Jong, PJ, Pevzner, P, Collins, C (2006) Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Res 16: pp. 394-404 CrossRef
    23. Volik, S, Zhao, S, Chin, K, Brebner, JH, Herndon, DR, Tao, Q, Kowbel, D, Huang, G, Lapuk, A, Kuo, WL, Magrane, G, De Jong, P, Gray, JW, Collins, C (2003) End-sequence profiling: sequence-based analysis of aberrant genomes. Proc Natl Acad Sci USA 100: pp. 7696-7701 CrossRef
    24. Raphael, BJ, Volik, S, Yu, P, Wu, C, Huang, G, Linardopoulou, EV, Trask, BJ, Waldman, F, Costello, J, Pienta, KJ, Mills, GB, Bajsarowicz, K, Kobayashi, Y, Sridharan, S, Paris, PL, Tao, Q, Aerni, SJ, Brown, RP, Bashir, A, Gray, JW, Cheng, JF, de Jong, P, Nefedov, M, Ried, T, Padilla-Nash, HM, Collins, CC (2008) A sequence-based survey of the complex structural organization of tumor genomes. Genome Biol 9: pp. R59 CrossRef
    25. Hampton, OA, Den Hollander, P, Miller, CA, Delgado, DA, Li, J, Coarfa, C, Harris, RA, Richards, S, Scherer, SE, Muzny, DM, Gibbs, RA, Lee, AV, Milosavljevic, A (2009) A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Res 19: pp. 167-177 CrossRef
    26. Hillmer, AM, Yao, F, Inaki, K, Lee, WH, Ariyaratne, PN, Teo, AS, Woo, XY, Zhang, Z, Zhao, H, Ukil, L, Chen, JP, Zhu, F, So, JB, Salto-Tellez, M, Poh, WT, Zawack, KF, Nagarajan, N, Gao, S, Li, G, Kumar, V, Lim, HP, Sia, YY, Chan, CS, Leong, ST, Neo, SC, Choi, PS, Thoreau, H, Tan, PB, Shahab, A, Ruan, X (2011) Comprehensive long-span paired-end-tag mapping reveals characteristic patterns of structural variations in epithelial cancer genomes. Genome Res 21: pp. 665-675 CrossRef
    27. Yao, F, Ariyaratne, PN, Hillmer, AM, Lee, WH, Li, G, Teo, AS, Woo, XY, Zhang, Z, Chen, JP, Poh, WT, Zawack, KF, Chan, CS, Leong, ST, Neo, SC, Choi, PS, Gao, S, Nagarajan, N, Thoreau, H, Shahab, A, Ruan, X, Cacheux-Rataboul, V, Wei, CL, Bourque, G, Sung, WK, Liu, ET, Ruan, Y (2012) Long span DNA paired-end-tag (DNA-PET) sequencing strategy for the interrogation of genomic structural mutations and fusion-point-guided reconstruction of amplicons. PLoS One 7: pp. e46152 CrossRef
    28. Diede, SJ, Tanaka, H, Bergstrom, DA, Yao, MC, Tapscott, SJ (2010) Genome-wide analysis of palindrome formation. Nat Genet 42: pp. 279 CrossRef
    29. Britten, RJ, Graham, DE, Neufeld, BR (1974) Analysis of repeating DNA sequences by reassociation. Methods Enzymol 29: pp. 363-418 CrossRef
    30. Smit, AFA, Hubley, R, Green, P (1996) RepeatMasker Open-3.0.
    31. Bailey, JA, Gu, Z, Clark, RA, Reinert, K, Samonte, RV, Schwartz, S, Adams, MD, Myers, EW, Li, PW, Eichler, EE (2002) Recent segmental duplications in the human genome. Science 297: pp. 1003-1007 CrossRef
    32. Miller, FJ, Rosenfeldt, FL, Zhang, C, Linnane, AW, Nagley, P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31: pp. e61 CrossRef
    33. Bailey, JA, Eichler, EE (2003) Genome-wide detection and analysis of recent segmental duplications within mammalian organisms. Cold Spring Harb Symp Quant Biol 68: pp. 115-124 CrossRef
    34. Futreal, PA, Coin, L, Marshall, M, Down, T, Hubbard, T, Wooster, R, Rahman, N, Stratton, MR (2004) A census of human cancer genes. Nat Rev Cancer 4: pp. 177-183 CrossRef
    35. Osborne, C, Wilson, P, Tripathy, D (2004) Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 9: pp. 361-377 CrossRef
    36. Santarius, T, Shipley, J, Brewer, D, Stratton, MR, Cooper, CS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10: pp. 59-64 CrossRef
    37. Barlund, M, Monni, O, Weaver, JD, Kauraniemi, P, Sauter, G, Heiskanen, M, Kallioniemi, OP, Kallioniemi, A (2002) Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer. Genes Chromosomes Cancer 35: pp. 311-317 CrossRef
    38. McClintock, B (1941) The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26: pp. 234-282
    39. Carvalho, CM, Ramocki, MB, Pehlivan, D, Franco, LM, Gonzaga-Jauregui, C, Fang, P, McCall, A, Pivnick, EK, Hines-Dowell, S, Seaver, LH, Friehling, L, Lee, S, Smith, R, Del Gaudio, D, Withers, M, Liu, P, Cheung, SW, Belmont, JW, Zoghbi, HY, Hastings, PJ, Lupski, JR (2011) Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 43: pp. 1074-1081 CrossRef
    40. Lee, W, Jiang, Z, Liu, J, Haverty, PM, Guan, Y, Stinson, J, Yue, P, Zhang, Y, Pant, KP, Bhatt, D, Ha, C, Johnson, S, Kennemer, MI, Mohan, S, Nazarenko, I, Watanabe, C, Sparks, AB, Shames, DS, Gentleman, R, de Sauvage, FJ, Stern, H, Pandita, A, Ballinger, DG, Drmanac, R, Modrusan, Z, Seshagiri, S, Zhang, Z (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465: pp. 473-477 CrossRef
    41. Hastings, PJ, Ira, G, Lupski, JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5: pp. e1000327 CrossRef
    42. Hastings, PJ, Lupski, JR, Rosenberg, SM, Ira, G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10: pp. 551-564 CrossRef
    43. Liu, P, Carvalho, CM, Hastings, PJ, Lupski, JR (2012) Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 22: pp. 211-220 CrossRef
    44. Tanaka, H, Tapscott, SJ, Trask, BJ, Yao, MC (2002) Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells. Proc Natl Acad Sci USA 99: pp. 8772-8777 CrossRef
    45. Hicks, J, Krasnitz, A, Lakshmi, B, Navin, NE, Riggs, M, Leibu, E, Esposito, D, Alexander, J, Troge, J, Grubor, V, Yoon, S, Wigler, M, Ye, K, Borresen-Dale, AL, Naume, B, Schlicting, E, Norton, L, Hagerstrom, T, Skoog, L, Auer, G, Maner, S, Lundin, P, Zetterberg, A (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16: pp. 1465-1479 CrossRef
    46. Bolstad, BM, Irizarry, RA, Astrand, M, Speed, TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: pp. 185-193 CrossRef
    47. Kent, WJ (2002) BLAT鈥搕he BLAST-like alignment tool. Genome Res 12: pp. 656-664 CrossRef
    48. Ye, J, Coulouris, G, Zaretskaya, I, Cutcutache, I, Rozen, S, Madden, TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: pp. 134 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Closely spaced long inverted repeats, also known as DNA palindromes, can undergo intrastrand annealing to form DNA hairpins. The ability to form these hairpins results in genome instability, difficulties in maintaining clones in Escherichia coli and major problems for most DNA sequencing approaches. Because of their role in genomic instability and gene amplification in some human cancers, it is important to develop systematic approaches to detect and characterize DNA palindromes. Results We developed a new protocol to identify palindromes that couples the S1 nuclease treated Cot0 DNA (GAPF) with high-throughput sequencing (GAP-Seq). Unlike earlier protocols, it does not involve restriction enzymatic digestion prior to DNA snap-back thereby preserving longer DNA sequences. It also indicates the location of the novel junction, which can then be recovered. Using MCF-7 breast cancer cell line as the proof-of-principle analysis, we have identified 35 palindrome candidates and physically characterized the top 5 candidates and their junctions. Because this protocol eliminates many of the false positives that plague earlier techniques, we have improved palindrome identification. Conclusions The GAP-Seq approach underscores the importance of developing new tools for identifying and characterizing palindromes, and provides a new strategy to systematically assess palindromes in genomes. It will be useful for studying human cancers and other diseases associated with palindromes.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.