Impaired baroreflex sensitivity in subjects with impaired glucose tolerance, but not isolated impaired fasting glucose
详细信息    查看全文
  • 作者:Jin-Shang Wu (1) (2)
    Feng-Hwa Lu (1) (2)
    Yi-Ching Yang (1) (2)
    Shei-Hsi Chang (3)
    Ying-Hsiang Huang (2)
    Jia-Jin Jason Chen (4)
    Chih-Jen Chang (1) (2)
  • 关键词:Diabetes mellitus ; Impaired glucose tolerance ; Impaired fasting glucose ; Spontaneous baroreflex sensitivity ; Valsalva ratio
  • 刊名:Acta Diabetologica
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:51
  • 期:4
  • 页码:535-541
  • 全文大小:226 KB
  • 参考文献:1. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Heethaar RM, Stehouwer CD (2001) Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 24:1793-798 CrossRef
    2. Scheffers IJM, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Philipp T, de Leeuw PW (2010) Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56:1254-258 CrossRef
    3. Levick JR (2003) Cardiovascular receptors, reflexes and central control. In An introduction to cardiovascular physiology, 4th ed. London, Edward Arnold, pp 278-97
    4. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7-9 CrossRef
    5. Watkins LL, Grossman P, Sherwood A (1996) Noninvasive assessment of baroreflex control in borderline hypertension: comparison with the phenylephrine method. Hypertension 28:238-43 CrossRef
    6. Robbe HWJ, Mulder LJM, Ruddel H, Langewitz WA, Veldman JBP, Mulder G (1987) Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 10:538-43 CrossRef
    7. Lord SW, Clayton RH, Hall MC, Gray JC, Murray A, McComb JM, Kenny RA (1998) Reproducibility of three different methods of measuring baroreflex sensitivity in normal subjects. Clin Sci 95:575-81 CrossRef
    8. Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553-579 CrossRef
    9. Gerritsen J, Dekker JM, TenVoorde BJ, Bertelsmann FW, Kostense PJ, Stehouwer CD, Heine RJ, Nijpels G, Heethaar RM, Bouter LM (2000) Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia 43:561-70 CrossRef
    10. Isak B, Oflazoglu B, Tanr?dag T, Yitmen I, Us O (2008) Evaluation of peripheral and autonomic neuropathy among patients with newly diagnosed impaired glucose tolerance. Diabetes Metab Res Rev 24:563-69
    11. Putz Z, Tabák AG, Tóth N, Istenes I, Németh N, Gandhi RA, Hermányi Z, Keresztes K, Jermendy G, Tesfaye S, Kempler P (2009) Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care 32:181-83 CrossRef
    12. Watkins LL, Surwit RS, Grossman P, Sherwood A (2000) Is there a glycemic threshold for impaired autonomic control? Diabetes Care 23:826-30 CrossRef
    13. Chang CJ, Wu JS, Lu FH, Lee HL, Yang YC, Wen MJ (1998) Fasting plasma glucose in screening for diabetes in the Taiwanese population. Diabetes Care 21:1856-860 CrossRef
    14. Rolka DB, Narayan KMV, Thompson TJ, Goldman D, Lindenmayer J, Alich K, Bacall D, Benjamin EM, Lamb B, Stuart DO, Engelgau MM (2001) Performance of recommended screening tests for undiagnosed diabetes and dysglycemia. Diabetes Care 24:1899-903 CrossRef
    15. Lu FH, Yang YC, Wu JS, Wu CH, Chang CJ (1998) A population-based study of the prevalence and associated factors of diabetes mellitus in southern Taiwan. Diabet Med 15:564-72 CrossRef
    16. Huikuri HV, Makikallio T, Airaksinen KE, Mitrani R, Castellanos A, Myerburg RJ (1999) Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol 34:1878-883 CrossRef
    17. World Health Organization Expert Committee (1995) Physical status: the use and interpretation of anthropometry. Technical Report Series No. 854. Geneva, WHO, pp 427-38
    18. Paffenbarger RS Jr, Blair SN, Lee IM, Hyde RT (1993) Measurement of physical activity to assess health effects in free-living populations. Med Sci Sports Exerc 25:60-0 CrossRef
    19. American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27:S5–S10 CrossRef
    20. Sato T, Nishinaga M, Kawamoto A, Ozawa T, Takatsuji H (1993) Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension 21:866-74 CrossRef
    21. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043-065 CrossRef
    22. Spallone V, Menzinger G (1997) Diagnosis of cardiovascular autonomic neuropathy in diabetes. Diabetes 46:S67–S76 CrossRef
    23. Lawrence IG, Weston PJ, Bennett MA, McNally PG, Burden AC, Thurston H (1997) Is impaired baroreflex sensitivity a predictor or cause of sudden death in insulin-dependent diabetes mellitus? Diabetic Med 14:82-5 CrossRef
    24. Ylitalo A, Airaksinen KE, Sellin L, Huikuri HV (1999) Effects of combination antihypertensive therapy on baroreflex sensitivity and heart rate variability in systemic hypertension. Am J Cardiol 83:885-89 CrossRef
    25. Chern CM, Hsu HY, Hu HH, Chen YY, Hsu LC, Chao AC (2006) Effects of atenolol and losartan on baroreflex sensitivity and heart rate variability in uncomplicated essential hypertension. J Cardiovasc Pharmacol 47:169-674 CrossRef
    26. Watkins PJ, Edmonds ME (1999) Diabetic autonomic failure. In: Mathias CJ, Bannister SR (eds) Autonomic failure: a textbook of clinical disorders of the autonomic nervous system, 4th edn. Oxford University Press, New York, pp 378-86
    27. Chapleau MW, Cunningham JT, Sullivan MJ, Wachtel RE, Abboud FM (1995) Structural versus functional modulation of the arterial baroreflex. Hypertension 26:341-47 CrossRef
    28. Fazan VP, Salgado HC, Barreira AA (2006) Aortic depressor nerve myelinated fibers in acute and chronic experimental diabetes. Am J Hypertens 19:153-60 CrossRef
    29. Gouty S, Regalia J, Cai F, Helke CJ (2003) Alpha-Lipoic acid treatment prevents the diabetes-induced attenuation of the afferent limb of the baroreceptor reflex in rats. Auton Neurosci 108:32-4 CrossRef
    30. Kaaja RJ, Poyhonen-Alho MK (2006) Insulin resistance and sympathetic overactivity in women. J Hypertens 24:131-41 CrossRef
    31. Skrapari I, Tentolouris N, Perrea D, Bakoyiannis C, Papazafiropoulou A, Katsilambros N (2007) Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity. Obesity 15:1685-693 CrossRef
    32. Pricher MP, Freeman KL, Brooks VL (2008) Insulin in the brain increases gain of baroreflex control of heart rate and lumbar sympathetic nerve activity. Hypertension 51:514-20 CrossRef
    33. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30:753-59 CrossRef
    34. Qiao Q, Jousilahti P, Eriksson J, Tuomilehto J (2003) Predictive properties of impaired glucose tolerance for cardiovascular risk are not explained by the development of overt diabetes during follow-up. Diabetes Care 26:2910-914 CrossRef
    35. Rijkelijkhuizen JM, Nijpels G, Heine RJ, Bouter LM, Stehouwer CD, Dekker JM (2007) High risk of cardiovascular mortality in individuals with impaired fasting glucose is explained by conversion to diabetes: the Hoorn study. Diabetes Care 30:332-36 CrossRef
    36. Udupa K, Thirthalli J, Sathyaprabha TN, Kishore KR, Raju TR, Gangadhar BN (2011) Differential actions of antidepressant treatments on cardiac autonomic alterations in depression: a prospective comparison. Asian J Psychiatr 4:100-06 CrossRef
    37. Wu CS, Shau WY, Chan HY, Lee YC, Lai YJ, Lai MS (2012) Utilization of antidepressants in Taiwan: a nationwide population-based survey from 2000 to 2009. Pharmacoepidemiol Drug Saf 21:980-88 CrossRef
  • 作者单位:Jin-Shang Wu (1) (2)
    Feng-Hwa Lu (1) (2)
    Yi-Ching Yang (1) (2)
    Shei-Hsi Chang (3)
    Ying-Hsiang Huang (2)
    Jia-Jin Jason Chen (4)
    Chih-Jen Chang (1) (2)

    1. Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
    2. Department of Family Medicine, National Cheng Kung University Hospital, 138, Sheng Li Road, Tainan, 70403, Taiwan, ROC
    3. Department of Information and Communication, Kun Shan University, Tainan, Taiwan, ROC
    4. Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
  • ISSN:1432-5233
文摘
Impaired baroreflex sensitivity (BRS) is associated with adverse cardiovascular outcomes. There are currently no studies on BRS changes in subjects with different glycemic statuses, including normal glucose tolerance (NGT), isolated impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and newly diagnosed diabetes (NDD). The aim of this study was to investigate the effects of NDD, IGT and isolated IFG on BRS, based on a community-based data. A total of 768 subjects were classified as NGT (n?=?498), isolated IFG (n?=?61), IGT (n?=?126) and NDD (n?=?83). Spontaneous BRS was determined by the spectral α coefficient method, i.e., the square root of the ratio between the power of the RR interval and the power of systolic blood pressure in the LF frequency region (0.04-.15?Hz) after the subjects had rested in a supine position for 5?min. Valsalva ratio was calculated as the longest RR interval after release of the Valsalva maneuver, divided by the shortest RR interval during the maneuver. As compared with NGT subjects, NDD (p?=?0.039) and IGT (p?=?0.041) subjects had a reduced spontaneous BRS in multivariate analysis based on analysis of covariance. NDD subjects exhibited a lower Valsalva ratio than NGT subjects (p?=?0.043). However, there were no significant differences in spontaneous BRS and Valsalva ratio between subjects with isolated IFG and NGT. In conclusion, NDD and IGT subjects had an impaired BRS as compared to NGT subjects. However, reduced BRS was not apparent in subjects with isolated IFG.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.