TFTS: A Novel Triple Factor Time Synchronization for Effective Routing in Large Scale WSN
详细信息    查看全文
  • 作者:K. Nagarathna ; Jayashree D. Mallapur
  • 关键词:Clock drift ; Skew ; Synchronization errors time synchronization ; Wireless sensor network
  • 刊名:Wireless Personal Communications
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:87
  • 期:4
  • 页码:1157-1173
  • 全文大小:1,417 KB
  • 参考文献:1.Faludi, R. (2010). Building wireless sensor networks: With ZigBee, XBee, Arduino, and processing (p. 322). Sebastopol: O’Reilly Media Inc. (Computers).
    2.Raghavendra, C. S., Sivalingam, K. M., & Znati, T. (2006). Wireless sensor networks (p. 426). Berlin: Springer. (Computers).MATH
    3. Szynkiewicz, E. N., Kwaśniewski, P., & Windyga, I. (2009). Comparative study of wireless sensor networks energy-efficient topologies and power save protocols. Journal of Telecommunication and Information Technology, 3, 68–75.
    4.Li, C., Zhang, H., Hao, B., & Li, J. (2011). A survey on routing protocols for large-scale wireless sensor networks. Sensors, 11, 3498–3526.CrossRef
    5.Azizi, T., Beghdad, R., & Oussalah, M. (2013). Bandwidth assignment in a cluster-based wireless sensor network. In Proceedings of the World Congress on Engineering (Vol. 2).
    6.Sadeghi, M., Khosravi, F., Atefi, K., & Barati, M. (2012). Security analysis of routing protocols in wireless sensor networks. IJCSI International Journal of Computer Science Issues, 9(1), 465–472.
    7.Xia, F. (2008). QoS challenges and opportunities in wireless sensor/actuator networks. Sensors, 8, 1099–1110.CrossRef
    8.Arora, A., Dutta, P., & Bapat, S. (2004). A line in the sand: A wireless sensor network for target detection, classification, and tracking. ACM: Journal Computer Networks, 46(5), 605–634.
    9. Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887–2897.MathSciNet CrossRef
    10.Ochiai, H., Mitran, P., & Poor, H. V. (2005). Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Transactions, 53(11), 4110–4124.MathSciNet CrossRef
    11. http://​www.​circlemud.​org/​jelson/​writings/​timesync/​node2.​html
    12.Li, L., Yongpan, L., Huazhong, Y., & Hui, W. (2011). Influence of node dynamics on cluster global time continuity. IEEE: Tsinghua Science and Technology, 16(2), 207–215.
    13.Shen, X., Qian, X., Zhao, B., Fang, Q., & Dai, G. (2011). Clapping and broadcasting synchronization in wireless sensor networks. IEEE: Tsinghua Science and Technology, 16(6), 632–639.
    14.Ju, Y., Paik, W., & Shin, M. (2014). Design of time synchronization protocol based on master–slave topology for heterogeneous USN. International Journal of Multimedia and Ubiquitous Engineering, 9(2), 373–384.CrossRef
    15.Yuan, Y., Lynne, L., & Parker, E. (2014). Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks. Elsevier: Information Fusion, 15, 64–79.
    16.Medina, C., Segura, J. C., & Torre, A. D. L. (2013). Accurate time synchronization of ultrasonic TOF measurements in IEEE 802.15.4 based wireless sensor networks. Elsevier: Adhoc Networks, 11, 442–452.
    17.Uluagac, A. S., Beyah, R. A., & Copeland, J. A. (2010). Time-Based DynamiC Keying and En-Route Filtering (TICK) for wireless sensor networks. In IEEE-Globecom (pp. 1–6).
    18.Bekmezci, I., Alagoz, F., & Arslan, M. G. (2007). Periodic global broadcast time synchronization (PGB-TS) for TDMA based sensor networks In IEEE-3rd International Conference on Recent Advances in Space Technologies (pp. 531–536).
    19.He, T., Vicaire, P., & Yan, T. (2006). Achieving real-time target tracking using wireless sensor networks. In Real-Time and Embedded Technology and Applications Symposium, Proceedings of the 12th IEEE.
    20. Hoepmana, J.-H., Larsson, A., Schiller, E. M., & Tsigas, P. (2011). Secure and self-stabilizing clock synchronization in sensor networks. Theoretical Computer Science, 412(40), 5631–5647.MathSciNet CrossRef MATH
    21.Chirdchoo, N., Soh, W.-S., & Chua, K. C. (2008). MU-Sync: A time synchronization protocol for underwater mobile networks. In Proceedings of the third ACM international workshop on Underwater Networks (Vol. 8, pp. 35–42).
    22.Funck, J., & Gühmann, C. (2013). Time-synchronous sampling in wireless sensor networks. In 19th Symposium IMEKO TC 4 Symposium and 17th IWADC Workshop Advances in Instrumentation and Sensors Interoperability.
    23.Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor networks. In Center for Embedded Network Sensing University of California (pp. 138–149).
    24.Maróti, M., Kusy, B., Simon, G., & Lédeczi, Á. (2004). The flooding time synchronization protocol. In Proceedings of the 2nd international conference on Embedded networked sensor systems (pp. 39–49).
    25.Greunen, J. V., & Rabaey, J. (2003). Lightweight time synchronization for sensor networks. In Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications (pp. 11–19).
    26.Yoon, S., Veerarittiphan, C., & Sichitiu, M. L. (2007). Tiny-Sync: Tight time synchronization for wireless sensor networks. ACM Transactions on Sensor Networks, 3(2), 81–118.CrossRef
    27.Noh, K.-L., Serpedin, E., & Qaraqe, K. (2008). A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. IEEE Transactions on Wireless Communications, 7(9), 3318–3322.CrossRef
    28.Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 36, 147–163.CrossRef
    29.Dai, H., & Han, R. (2004). TSync : A lightweight bidirectional time synchronization service for wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review, 8(1), 125–139.CrossRef
    30.Solis, R., Borkar, V. S., & Kumar, P. R. (2006). A new distributed time synchronization protocol for multihop wireless networks. In Proceedings of the 45th IEEE Conference on Decision and Control.
    31.Schenato, L., & Fiorentin, F. (2011). Average Time Synch: A consensus-based protocol for clock synchronization in wireless sensor networks. Automatica, 47(9), 1878–1886.MathSciNet CrossRef MATH
    32.Carli, R., Chiuso, A., Schenato, L., & Zampieri, S. (2011). Optimal synchronization for networks of noisy double integrators. IEEE Transactions on Automatic Control, 56(5), 1146–1152.MathSciNet CrossRef
    33.Piecewise Continuous Function. http://​www.​mathwords.​com/​p/​piecewise_​continuous_​function.​htm . Retrived 9 June 2015.
    34.Left Continuous Function. http://​www.​ditutor.​com/​limits/​left-continuous.​html . Retrived 10 June 2015.
    35.Swain, A. R., & Hansdah, R. C. (2011). A weighted average based external clock synchronization protocol for wireless sensor networks. In 31st International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 218–229).
    36.Watwe, S., & Hansdah, R. C. (2015). Improving the energy efficiency of a clock synchronization protocol for WSNs using a TDMA-based MAC protocol. In IEEE 29th International Conference on Advanced Information Networking and Applications (AINA) (pp. 231–238).
  • 作者单位:K. Nagarathna (1)
    Jayashree D. Mallapur (2)

    1. Visvesvaraya Technological University, Belgaum, Karnataka, India
    2. Department of Electronics and Communication Engineering, Basaveshwar Engineering College, Bagalkot, 587102, Karnataka, India
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Signal,Image and Speech Processing
    Processor Architectures
  • 出版者:Springer Netherlands
  • ISSN:1572-834X
文摘
The area of wireless sensor network have already gained a good momentum from last decade in research community owing to its potential advantages of event monitoring without any aid of human as well as ongoing issues encountered by it. Out of various issues, time synchronization is one of the prominent issues, where the success factor of event alarms generated by the nodes depends. As the hardware based clocks in wireless sensor network are quite imprecise so there are large number of possibilities of clock drift, skewness, and offset in clock time. This paper starts by discussing the loopholes of the prior standard research work and introduces a novel Triple Factor Time Synchronization (TFTS) algorithm that addresses the issues. Evaluated on extended level of experiments and benchmarking with standard protocols, TFTS based on probabilistic approach is found to generate reduced synchronization errors optimally.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.