Carbon-tolerance effects of Sm0.2Ce0.8O2?ο/sub> modified Ni/YSZ anode for solid oxide fuel cells under methane fuel conditions
详细信息    查看全文
  • 作者:Jeong Myeong Lee (1)
    Yoon Gon Kim (1)
    Seung Jin Lee (1)
    Hee Su Kim (2) (3)
    Sung Pil Yoon (2)
    Suk Woo Nam (2)
    Soon Do Yoon (4)
    Jeong Woo Yun (1)
  • 关键词:Solid oxide fuel cell ; SDC coating ; Methane ; Electrochemical oxidation ; Carbon deposition
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:44
  • 期:5
  • 页码:581-588
  • 全文大小:1,284 KB
  • 参考文献:1. Zhan Z, Lin Y, Pillai M, Kim I, Barnett SA (2006) High-rate electrochemical partial oxidation of methane in solid oxide fuel cell. J Power Sources 161:460-65 CrossRef
    2. Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32:17-8 CrossRef
    3. Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649-51 CrossRef
    4. Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid oxide fuel cell. Nature 404:265-67 CrossRef
    5. Steele BCH, Heinzel A (2001) Materials for fuel-cell technology. Nature 414:345-52 CrossRef
    6. Steele BCH (1999) Running on natural gas. Nature 400:619-20 CrossRef
    7. Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844-47 CrossRef
    8. Gunji A, Wen C, Otomo J, Kobayashi T, Ukai K, Mizutani Y (2004) Carbon deposition behavior on Ni–ScSZ anodes for internal reforming solid oxide fuel cells. J Power Sources 131:285-88 CrossRef
    9. Gorte RJ, Vohs JM (2003) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J Catal 216:477-86 CrossRef
    10. Mclntosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cells. Chem Rev 104:4845-866 CrossRef
    11. Laobuthee A, Veranitisagul C, Koonsaeng N, Bhavakul V, Laosiripojana N (2010) Catalytic activity of ultrafine CexGdySmzO2 synthesized by metal organic complex method toward steam reforming of methane. Catal Commun 12:25-9 CrossRef
    12. Brus G, Komatsu Y, Kimijima S, Szmyd JS (2012) An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts. Int J Thermodyn 15:43-1
    13. Yoon JS, Kim YH, Lee EJ, Ji MJ, Choi BH, Hwang HJ (2011) Catalytic activity of Y and Fe Co-doped SrTiO3 perovskites for methane oxidation. Electro Mater Lett 7:209-13 CrossRef
    14. Ge XM, Chan SH, Liu QL, Sun Q (2012) Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Adv Energy Mater 2:1156-181 CrossRef
    15. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev Sci Eng 41:1-2 CrossRef
    16. Casta LOO, Silva AM, Noronha FB, Mattos LV (2012) The study of the performance of Ni supported on gadolinium doped ceria SOFC anode on the steam reforming of ethanol. Int J Hydro Energy 37:5930-939 CrossRef
    17. Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S (2006) Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: improvement of resistance toward carbon formation by the redox property of doping CeO2. Fuel 85:232-23 CrossRef
    18. Cavrielatos I, Drakopoulos V, Neophytides SG (2008) Carbon tolerant Ni–Au SOFC electrodes operating under internal steam reforming conditions. J Catal 259:75-4 CrossRef
    19. Lanzini A, Leone P, Guerra C, Smeacetto F, Brandon NP, Santarelli M (2013) Durability of anode supported solid oxide fuel cell (SOFC) under direct dry-reforming of methane. Chem Eng J 220:254-63 CrossRef
    20. Gurav HR, Bobade R, Das VL, Chilukuri S (2012) Carbon dioxide reforming of methane over ruthenium substituted strontium titanate perovskite catalysts. Ind J Chem 51A:1339-347
    21. Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid oxide fuel cells. Nat Mater 2:320-23 CrossRef
    22. Hui S, Petric A (2002) Electrical properties of yttrium-doped strontium titanate under reducing conditions. J Electrochem Soc 149:J1–J10 CrossRef
    23. Hui S, Petric A (2003) Electrical properties in La2Sr4Ti6O19?ο/sub>: a potential anode for high temperature fuel cells. Solid State Ion 159:159-65 CrossRef
    24. Kim HS, Yoon SP, Yun JW, Song SA, Jang SC, Nam SW, Shul YG (2012) Sr0.92Y0.08TiO3?ο/sub>/Sm0.2Ce0.8O2?ο/sub> anode for solid oxide fuel cells running on methane. Int J Hydro Energy 37:16130-6139 CrossRef
    25. Yun JW, Yoon SP, Kim HS, Han J, Nam SW (2012) Effects of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel. Int J Hydro Energy 37:4356-366 CrossRef
    26. Yun JW, Ham HC, Kim HS, Song SA, Nam SW, Yoon SP (2013) Effects of the Sm0.2Ce0.8O2?ο/sub> modification of a Ni-based anode on the H2S tolerance for intermediate temperature solid oxide fuel cells. J Electrochem Soc 160:F153–F161 CrossRef
    27. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ion 52:165-72 CrossRef
    28. Minh NQ (1995) Science and technology of ceramic fuel cell. Elsevier, New York
  • 作者单位:Jeong Myeong Lee (1)
    Yoon Gon Kim (1)
    Seung Jin Lee (1)
    Hee Su Kim (2) (3)
    Sung Pil Yoon (2)
    Suk Woo Nam (2)
    Soon Do Yoon (4)
    Jeong Woo Yun (1)

    1. School of Applied Chemical Engineering, Chonnam National University, 300 Bukgu, Kwangju, 500-757, Republic of Korea
    2. Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
    3. School of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
    4. Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 550-749, Republic of Korea
  • ISSN:1572-8838
文摘
Samarium-doped ceria (SDC) is coated onto a Ni/yttria-stabilized zirconia (Ni/YSZ) anode for the direct use of methane in solid-oxide fuel cells. Porous SDC thin layer is applied to the anode using the sol–gel coating method. The experiment was performed in H2 and CH4 conditions at 800?°C. The cell performance was improved by approximately 20?% in H2 conditions by the SDC coating, due to the high ionic conductivity, the mixed ionic and electronic conductive property of the SDC, and the increased triple phase boundary area by the SDC coating in the anode. Carbon was hardly deposited in the SDC-coated Ni/YSZ anode. The cell performance of the SDC-coated Ni/YSZ anode did not show any significant degradation for up to 90?h under 0.1?A?cm? at 800?°C. The porous thin SDC coating on the Ni/YSZ anode provided the electrochemical oxidation of CH4 over the whole anode, and minimized the carbon deposition by electrochemical carbon oxidation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.