T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice
详细信息    查看全文
  • 作者:Katja Hueper (1) (2)
    Matti Peperhove (1)
    Song Rong (3) (4)
    Jessica Gerstenberg (3)
    Michael Mengel (5)
    Martin Meier (2) (6)
    Marcel Gutberlet (1) (2)
    Susanne Tewes (1)
    Amelie Barrmeyer (1)
    Rongjun Chen (3) (7)
    Herman Haller (3)
    Frank Wacker (1) (2)
    Dagmar Hartung (1) (2)
    Faikah Gueler (3)
  • 关键词:Magnetic Resonance Imaging ; T1 ; mapping ; Acute Kidney Injury ; Ischemia ; Reperfusion Injury ; Edema ; Chronic Kidney disease
  • 刊名:European Radiology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:24
  • 期:9
  • 页码:2252-2260
  • 全文大小:7,114 KB
  • 参考文献:1. Wald R, Quinn RR, Luo J et al (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302:1179-185 CrossRef
    2. Leung KC, Tonelli M, James MT (2013) Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol 9:77-5 CrossRef
    3. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448-460 CrossRef
    4. Srisawat N, Kellum JA (2011) Acute kidney injury: definition, epidemiology, and outcome. Curr Opin Crit Care 17:548-55
    5. Li X, Hassoun HT, Santora R, Rabb H (2009) Organ crosstalk: the role of the kidney. Curr Opin Crit Care 15:481-87
    6. Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151-56 CrossRef
    7. Sutton TA, Molitoris BA (1998) Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol 18:490-97
    8. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210-221 CrossRef
    9. McCullough PA, Shaw AD, Haase M et al (2013) Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:13-9 CrossRef
    10. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785-95, W-270, W-271, W-272, W-273, W-274, W-275, W-276, W-277, W-278 CrossRef
    11. Lanzman RS, Wittsack HJ, Martirosian P et al (2010) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485-491 CrossRef
    12. Prasad PV (2006) Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Ren Physiol 290:F958-74
    13. Pohlmann A, Hentschel J, Fechner M et al (2013) High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury. PLoS One 8:e57411 CrossRef
    14. Lanzman RS, Ljimani A, Pentang G et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266:218-25 CrossRef
    15. Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25-8 CrossRef
    16. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427-433 CrossRef
    17. Shah B, Anderson SW, Scalera J, Jara H, Soto JA (2011) Quantitative MR imaging: physical principles and sequence design in abdominal imaging. Radiographics 31:867-80 CrossRef
    18. Kiricuta IC Jr, Simplaceanu V (1975) Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res 35:1164-167
    19. Kundel HL, Schlakman B, Joseph PM, Fishman JE, Summers R (1986) Water content and NMR relaxation time gradients in the rabbit kidney. Investig Radiol 21:12-7 CrossRef
    20. de Miguel MH, Yeung HN, Goyal M et al (1994) Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease. J Am Soc Nephrol 4:1861-868
    21. Puntmann VO, Voigt T, Chen Z et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6:475-84 CrossRef
    22. Messroghli DR, Walters K, Plein S et al (2007) Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 58:34-0 CrossRef
    23. Won S, Davies-Venn C, Liu S, Bluemke DA (2013) Noninvasive imaging of myocardial extracellular matrix for assessment of fibrosis. Curr Opin Cardiol 28:282-89 CrossRef
    24. Salerno M, Kramer CM (2013) Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging 6:806-22 CrossRef
    25. Hueper K, Rong S, Gutberlet M et al (2013) T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology. Invest Radiol 48:834-42
    26. Liu AS, Xie JX (2003) Functional evaluation of normothermic ischemia and reperfusion injury in dog kidney by combining MR diffusion-weighted imaging and Gd-DTPA enhanced first-pass perfusion. J Magn Reson Imaging 17:683-93
    27. Gueler F, Rong S, Mengel M et al (2008) Renal urokinase-type plasminogen activator (uPA) receptor but not uPA deficiency strongly attenuates ischemia reperfusion injury and acute kidney allograft rejection. J immunol (Baltimore, Md : 1950) 181:1179-1189
    28. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196-05 CrossRef
    29. Lu X, Li N, Shushakova N et al (2012) C57BL/6 and 129/Sv mice: genetic difference to renal ischemia-reperfusion. J Nephrol 25:738-43 CrossRef
    30. Hueper K, Gutberlet M, Rong S et al (2014) Acute Kidney Injury: Arterial Spin Labeling to Monitor Renal Perfusion Impairment in Mice--Comparison with Histopathologic Results and Renal Function. Radiology 270:117-24
    31. Karlberg L, Norlen BJ, Ojteg G, Wolgast M (1983) Impaired medullary circulation in postischemic acute renal failure. Acta Physiol Scand 118:11-7 CrossRef
    32. Haase VH (2013) Mechanisms of Hypoxia Responses in Renal Tissue. J Am Soc Nephrol. doi:10.1681/ASN.2012080855
    33. Hricak H, Terrier F, Demas BE (1986) Renal allografts: evaluation by MR imaging. Radiology 159:435-41 CrossRef
    34. Yuasa Y, Kundel HL (1985) Magnetic resonance imaging following unilateral occlusion of the renal circulation in rabbits. Radiology 154:151-56 CrossRef
    35. London DA, Davis PL, Williams RD, Crooks LE, Sheldon PE, Gooding CA (1983) Nuclear magnetic resonance imaging of induced renal lesions. Radiology 148:167-72 CrossRef
  • 作者单位:Katja Hueper (1) (2)
    Matti Peperhove (1)
    Song Rong (3) (4)
    Jessica Gerstenberg (3)
    Michael Mengel (5)
    Martin Meier (2) (6)
    Marcel Gutberlet (1) (2)
    Susanne Tewes (1)
    Amelie Barrmeyer (1)
    Rongjun Chen (3) (7)
    Herman Haller (3)
    Frank Wacker (1) (2)
    Dagmar Hartung (1) (2)
    Faikah Gueler (3)

    1. Department of Radiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
    2. REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
    3. Department of Nephrology, Hannover Medical School, Hannover, Germany
    4. Laboratory of Organ Transplantation, Zunyi Medical College, Zunyi, China
    5. Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
    6. Institute for Animal Science, Hannover Medical School, Hannover, Germany
    7. The Kidney Disease Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
  • ISSN:1432-1084
文摘
Objectives To investigate whether T1-mapping allows assessment of acute kidney injury (AKI) and prediction of chronic kidney disease (CKD) in mice. Methods AKI was induced in C57Bl/6N mice by clamping of the right renal pedicle for 35?min (moderate AKI, n--6) or 45?min (severe AKI, n--3). Sham animals served as controls (n--). Renal histology was assessed in the acute (day 1-?day 7; d1-?d7) and chronic phase (d28) after AKI. Furthermore, longitudinal MRI-examinations (prior to until d28 after surgery) were performed using a 7-Tesla magnet. T1-maps were calculated from a fat-saturated echoplanar inversion recovery sequence, and mean and relative T1-relaxation times were determined. Results Renal histology showed severe tubular injury at d1-?d7 in both AKI groups, whereas, at d28, only animals with prolonged 45-min ischemia showed persistent signs of AKI. Following both AKI severities T1-values significantly increased and peaked at d7. T1-times in the contralateral kidney without AKI remained stable. At d7 relative T1-values in the outer stripe of the outer medulla were significantly higher after severe than after moderate AKI (138?±-?% vs. 121?±-?%, p--.001). T1-elevation persisted until d28 only after severe AKI. Already at d7 T1 in the outer stripe of the outer medulla correlated with kidney volume loss indicating CKD (r--.83). Conclusion T1-mapping non-invasively detects AKI severity in mice and predicts further outcome. Key Points -Renal T1-relaxation times are increased after ischemia-induced acute kidney injury. -Renal T1-values correlate with subsequent kidney volume loss. -T1-mapping detects the severity of acute kidney injury and predicts further outcome.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.