Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes
详细信息    查看全文
  • 作者:Joaquín R. Domínguez ; Maria J. Muñoz-Peña…
  • 关键词:Parabens ; BDD electrooxidation ; Response surface methodology ; EAOPs ; River water
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:October 2016
  • 年:2016
  • 卷:23
  • 期:20
  • 页码:20315-20330
  • 全文大小:11,605 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
  • 卷排序:23
文摘
The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO −. The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.