FiloDetect: automatic detection of filopodia from fluorescence microscopy images
详细信息    查看全文
  • 作者:Sharmin Nilufar (6)
    Anne A Morrow (7)
    Jonathan M Lee (7)
    Theodore J Perkins (6) (7) (8)
  • 关键词:Filopodia ; Morphology ; FiloDetect ; Microscopy image
  • 刊名:BMC Systems Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:7
  • 期:1
  • 全文大小:921KB
  • 参考文献:1. Gupton SL, Gertler FB: <strong class="a-plus-plus">Filopodia: the fingers that do the walking.strong> / Sci STKE 2007,<strong class="a-plus-plus">2007strong>(400)<strong class="a-plus-plus">:strong>re5. ss="external" href="http://dx.doi.org/10.1126/stke.4002007re5">CrossRef
    2. Mattila PK, Lappalainen P: <strong class="a-plus-plus">Filopodia: molecular architecture and cellular functions.strong> / Nat Rev Mol Cell Biol 2008,<strong class="a-plus-plus">9strong>(6)<strong class="a-plus-plus">:strong>446-54. ss="external" href="http://dx.doi.org/10.1038/nrm2406">CrossRef
    3. Arjonen A, Kaukonen R, Ivaska J: <strong class="a-plus-plus">Filopodia and adhesion in cancer cell motility.strong> / Cell Adh Migration 2011,<strong class="a-plus-plus">5strong>(5)<strong class="a-plus-plus">:strong>421-30. ss="external" href="http://dx.doi.org/10.4161/cam.5.5.17723">CrossRef
    4. Chen L, Yang S, Jakoncic J, Zhang JJ, Huang XY: <strong class="a-plus-plus">Migrastatin analogues target fascin to block tumour metastasis.strong> / Nature 2010,<strong class="a-plus-plus">464strong>(7291)<strong class="a-plus-plus">:strong>1062-066. ss="external" href="http://dx.doi.org/10.1038/nature08978">CrossRef
    5. Husainy A, Morrow A, Perkins T, Lee J: <strong class="a-plus-plus">Robust patterns in the stochastic organization of filopodia.strong> / BMC Cell Biol 2010, <strong class="a-plus-plus">11:strong>86+. ss="external" href="http://dx.doi.org/10.1186/1471-2121-11-86">CrossRef
    6. Al-kofahi KA, Lasek S, Szarowski DH, Pace CJ, Nagy G, Member S, Turner JN, Roysam B: <strong class="a-plus-plus">Rapid automated three-dimensional tracing of neurons from confocal image stacks.strong> / IEEE Trans Inf Technol Biomed 2002, <strong class="a-plus-plus">6:strong>171-87. ss="external" href="http://dx.doi.org/10.1109/TITB.2002.1006304">CrossRef
    7. Meijering E: <strong class="a-plus-plus">Neuron tracing in perspective.strong> / Cytom Part A 2010,<strong class="a-plus-plus">77strong>(7)<strong class="a-plus-plus">:strong>693-04. ss="external" href="http://dx.doi.org/10.1002/cyto.a.20895">CrossRef
    8. He W, Hamilton TA, Cohen AR, Holmes TJ, Pace C, Szarowski DH, Turner JN, Roysam B: <strong class="a-plus-plus">Automated three-dimensional tracing of neurons in confocal and brightfield images.strong> / Microsc Microanal 2003, <strong class="a-plus-plus">9:strong>296-10. ss="external" href="http://dx.doi.org/10.1017/S143192760303040X">CrossRef
    9. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M: <strong class="a-plus-plus">Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images.strong> / Cytom Part A 2004,<strong class="a-plus-plus">58Astrong>(2)<strong class="a-plus-plus">:strong>167-76. ss="external" href="http://dx.doi.org/10.1002/cyto.a.20022">CrossRef
    10. Costantino S, Kent CB, Godin AG, Kennedy TE, Wiseman PW, Fournier AE: <strong class="a-plus-plus">Semi-automated quantification of filopodial dynamics.strong> / J Neurosci Methods 2008, <strong class="a-plus-plus">171:strong>165-73. ss="external" href="http://dx.doi.org/10.1016/j.jneumeth.2008.02.009">CrossRef
    11. Rishal I, Golani O, Rajman M, Costa B, Ben-Yaakov K, Schoenmann Z, Yaron A, Basri R, Fainzilber M, Galun M: <strong class="a-plus-plus">WIS-Neuromath enables versatile high throughput analyses of neuronal processes.strong> / Dev Neurobiol 2013,<strong class="a-plus-plus">73strong>(3)<strong class="a-plus-plus">:strong>247-6. ss="external" href="http://dx.doi.org/10.1002/dneu.22061">CrossRef
    12. Fanti Z, Martinez-Perez M, De-Miguel F: <strong class="a-plus-plus">NeuronGrowth, a software for automatic quantification of neurite and filopodial dynamics from time-lapse sequences of digital images.strong> / Dev Neurobiol 2011,<strong class="a-plus-plus">71strong>(10)<strong class="a-plus-plus">:strong>870-1. ss="external" href="http://dx.doi.org/10.1002/dneu.20866">CrossRef
    13. Dehmelt L, Poplawski G, Hwang E, Halpain S: <strong class="a-plus-plus">NeuriteQuant: an open source toolkit for high content screens of neuronal morphogenesis.strong> / BMC Neurosci 2011, <strong class="a-plus-plus">1:strong>1-3.
    14. Jeganathan S, Morrow A, Amiri A, Lee JM: <strong class="a-plus-plus">Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation.strong> / Mol Cell Biol 2008,<strong class="a-plus-plus">28strong>(14)<strong class="a-plus-plus">:strong>4549-561. ss="external" href="http://dx.doi.org/10.1128/MCB.00150-08">CrossRef
    15. Kulkarni G, Turbin D, Amiri A, Jeganathan S, Andrade-Navarro M, Wu T, Huntsman D, Lee J: <strong class="a-plus-plus">Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer.strong> / Breast Cancer Res Treat 2007, <strong class="a-plus-plus">102:strong>31-1. ss="external" href="http://dx.doi.org/10.1007/s10549-006-9315-8">CrossRef
    16. Tomlinson VAL, Newbery HJ, Wray NR, Jackson J, Larionov A, Miller WR, Dixon JM, Abbott CM: <strong class="a-plus-plus">Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours.strong> / BMC Cancer 2005,<strong class="a-plus-plus">5strong>(113)<strong class="a-plus-plus">:strong>1471-407.
    17. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, / et al.: <strong class="a-plus-plus">The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.strong> / Nature 2012,<strong class="a-plus-plus">486strong>(7403)<strong class="a-plus-plus">:strong>346-52.
    18. Schober JM, Komarova YA, Chaga OY, Akhmanova A, Borisy GG: <strong class="a-plus-plus">Microtubule-targeting-dependent reorganization of filopodia.strong> / J Cell Sci 2007, <strong class="a-plus-plus">120:strong>1235-244. ss="external" href="http://dx.doi.org/10.1242/jcs.003913">CrossRef
    19. Yang C, Czech L, Gerboth S, Kojima Si, Scita G, Svitkina T: <strong class="a-plus-plus">Novel roles of Formin mDia2 in Lamellipodia and filopodia formation in motile cells.strong> / PLoS Biol 2007,<strong class="a-plus-plus">5strong>(11)<strong class="a-plus-plus">:strong>e317+. ss="external" href="http://dx.doi.org/10.1371/journal.pbio.0050317">CrossRef
    20. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Vasiliev JM, Borisy GG, Kojima Si: <strong class="a-plus-plus">Mechanism of filopodia initiation by reorganization of a dendritic network.strong> / J Cell Biol 2003,<strong class="a-plus-plus">160strong>(3)<strong class="a-plus-plus">:strong>409-21. ss="external" href="http://dx.doi.org/10.1083/jcb.200210174">CrossRef
    21. Debnath J, Muthuswamy SK, Brugge JS: <strong class="a-plus-plus">Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures.strong> / Methods (San Diego, Calif) 2003,<strong class="a-plus-plus">30strong>(3)<strong class="a-plus-plus">:strong>256-68. ss="external" href="http://dx.doi.org/10.1016/S1046-2023(03)00032-X">CrossRef
    22. Otsu N: <strong class="a-plus-plus">A threshold selection method from gray-level histograms.strong> / Ieee Trans Syst Man Cybern 1979, <strong class="a-plus-plus">9:strong>62-6. ss="external" href="http://dx.doi.org/10.1109/TSMC.1979.4310076">CrossRef
    23. Sezgin M, Sankur B: <strong class="a-plus-plus">Survey over image thresholding techniques and quantitative performance evaluation.strong> / J Electron Imaging 2004, <strong class="a-plus-plus">13:strong>146-68. ss="external" href="http://dx.doi.org/10.1117/1.1631315">CrossRef
    24. Zack GW, Rogers WE, Latt SA: <strong class="a-plus-plus">Automatic measurement of sister chromatid exchange frequency.strong> / J Histochem Cytochem 1977,<strong class="a-plus-plus">25strong>(7)<strong class="a-plus-plus">:strong>741-53. ss="external" href="http://dx.doi.org/10.1177/25.7.70454">CrossRef
    25. Flavio: <strong class="a-plus-plus">Thresholding using the ISODATA clustering algorithm.strong> / IEEE Trans Syst Man Cybernet 1980,<strong class="a-plus-plus">10strong>(11)<strong class="a-plus-plus">:strong>771-74. ss="external" href="http://dx.doi.org/10.1109/TSMC.1980.4308400">CrossRef
    26. Glasbey C: <strong class="a-plus-plus">An analysis of histogram-based thresholding algorithms.strong> / CVGIP: Graphical Models Image Process 1993,<strong class="a-plus-plus">55strong>(6)<strong class="a-plus-plus">:strong>532-37. f="http://www.sciencedirect.com/science/article/pii/S1049965283710400" class="a-plus-plus">http://www.sciencedirect.com/science/article/pii/S1049965283710400 ss="external" href="http://dx.doi.org/10.1006/cgip.1993.1040">CrossRef
    27. Kapur J, Sahoo P, Wong A: <strong class="a-plus-plus">A new method for gray-level picture thresholding using the entropy of the histogram.strong> / Comput Vis, Graphics, Image Process 1985,<strong class="a-plus-plus">29strong>(3)<strong class="a-plus-plus">:strong>273-85. ss="external" href="http://dx.doi.org/10.1016/0734-189X(85)90125-2">CrossRef
    28. Haralick RM, Sternberg SR, Zhuang X: <strong class="a-plus-plus">Image analysis using mathematical morphology.strong> / IEEE Trans Pattern Anal Mach Intell 1987,<strong class="a-plus-plus">9strong>(4)<strong class="a-plus-plus">:strong>532-50. ss="external" href="http://dx.doi.org/10.1109/TPAMI.1987.4767941">CrossRef
    29. Rodrigues I, Xavier J, Sanches J: <strong class="a-plus-plus">Fluorescence confocal microscopy imaging denoising with photobleaching.strong> In / IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada: IEEE; 2008:2205-208.
    30. Srivastava R, Gupta J, Parthasarathy H: <strong class="a-plus-plus">Enhancement and restoration of microscopic images corrupted with poisson’s noise using a nonlinear partial differential equation-based filter.strong> / Defence Sci J 2011,<strong class="a-plus-plus">61strong>(5)<strong class="a-plus-plus">:strong>437-42.
    31. Naumanen P, Lappalainen P, Hotulainen P: <strong class="a-plus-plus">Mechanisms of actin stress fibre assembly.strong> / J Microsc 2008,<strong class="a-plus-plus">231strong>(3)<strong class="a-plus-plus">:strong>446-54. ss="external" href="http://dx.doi.org/10.1111/j.1365-2818.2008.02057.x">CrossRef
  • 作者单位:Sharmin Nilufar (6)
    Anne A Morrow (7)
    Jonathan M Lee (7)
    Theodore J Perkins (6) (7) (8)

    6. Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1Y 4E9, Canada
    7. Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
    8. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
文摘
Background Filopodia are small cellular projections that help cells to move through and sense their environment. Filopodia play crucial roles in processes such as development and wound-healing. Also, increases in filopodia number or size are characteristic of many invasive cancers and are correlated with increased rates of metastasis in mouse experiments. Thus, one possible route to developing anti-metastatic therapies is to target factors that influence the filopodia system. Filopodia can be detected by eye using confocal fluorescence microscopy, and they can be manually annotated in images to quantify filopodia parameters. Although this approach is accurate, it is slow, tedious and not entirely objective. Manual detection is a significant barrier to the discovery and quantification of new factors that influence the filopodia system. Results Here, we present FiloDetect, an automated tool for detecting, counting and measuring the length of filopodia in fluorescence microscopy images. The method first segments the cell from the background, using a modified triangle threshold method, and then extracts the filopodia using a series of morphological operations. We verified the accuracy of FiloDetect on Rat2 and B16F1 cell images from three different labs, showing that per-cell filopodia counts and length estimates are highly correlated with the manual annotations. We then used FiloDetect to assess the role of a lipid kinase on filopodia production in breast cancer cells. Experimental results show that PI4KIII β expression leads to an increase in filopodia number and length, suggesting that PI4KIII β is involved in driving filopodia production. Conclusion FiloDetect provides accurate and objective quantification of filopodia in microscopy images, and will enable large scale comparative studies to assess the effects of different genetic and chemical perturbations on filopodia production in different cell types, including cancer cell lines.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.