MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN
详细信息    查看全文
  • 作者:Lei Wang ; Danqiu Tian ; Jihua Hu ; Haijian Xing ; Min Sun ; Juanli Wang…
  • 关键词:Congenital heart disease ; FXN ; MiRNA ; 145
  • 刊名:Pediatric Cardiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:37
  • 期:4
  • 页码:629-636
  • 全文大小:1,579 KB
  • 参考文献:1.Al-Mahdawi S et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746CrossRef PubMed
    2.Baralle M et al (2008) Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing. Am J Hum Genet 83(1):77–88CrossRef PubMed PubMedCentral
    3.Bulteau AL et al (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305(5681):242–245CrossRef PubMed
    4.Calabrese V et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162CrossRef PubMed
    5.Campuzano V et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427CrossRef PubMed
    6.Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104(6):724–732CrossRef PubMed PubMedCentral
    7.Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842CrossRef PubMed PubMedCentral
    8.Frederikse PH, Donnelly R, Partyka LM (2006) miRNA and Dicer in the mammalian lens: expression of brain-specific miRNAs in the lens. Histochem Cell Biol 126(1):1–8CrossRef PubMed
    9.Gakh O et al (2010) Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron–sulfur cluster assembly. J Biol Chem 285(49):38486–38501CrossRef PubMed PubMedCentral
    10.Gong LG et al (2005) Analysis of single nucleotide polymorphisms and haplotypes in HOXC gene cluster within susceptible region 12q13 of simple congenital heart disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22(5):497–501PubMed
    11.Greene E et al (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35(10):3383–3390CrossRef PubMed PubMedCentral
    12.He S et al (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 441(4):763–769CrossRef PubMed
    13.Hoffman JI (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16(4):155–165PubMed
    14.Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900CrossRef PubMed
    15.Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264CrossRef PubMed
    16.Lim SS et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2224–2260CrossRef PubMed PubMedCentral
    17.Lu C, Cortopassi G (2007) Frataxin knockdown causes loss of cytoplasmic iron–sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 457(1):111–122CrossRef PubMed PubMedCentral
    18.Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369(5):448–457CrossRef PubMed
    19.Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17CrossRef PubMed
    20.Schoenfeld RA et al (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14(24):3787–3799CrossRef PubMed
    21.Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRef PubMed PubMedCentral
    22.Stelzl U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968CrossRef PubMed
    23.Utsunomiya T et al (2014) Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res 44(6):631–638CrossRef PubMed
    24.van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117(9):2369–2376CrossRef PubMed PubMedCentral
    25.Whitnall M et al (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci USA 105(28):9757–9762CrossRef PubMed PubMedCentral
    26.Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220CrossRef PubMed
    27.Zhao Y et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317CrossRef PubMed
    28.Zhao N et al (2015) MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ Res 116(1):23–34CrossRef PubMed PubMedCentral
  • 作者单位:Lei Wang (1)
    Danqiu Tian (1)
    Jihua Hu (1)
    Haijian Xing (1)
    Min Sun (1)
    Juanli Wang (1)
    Qiang Jian (1)
    Hua Yang (1)

    1. Department of Cardiology, Xi’an Children’s Hospital, No. 69, Xiju RD, Lianhu District, Xi’an, 710003, Shaanxi, China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
    Cardiac Surgery
    Vascular Surgery
  • 出版者:Springer New York
  • ISSN:1432-1971
文摘
Congenital heart disease (CHD) is the leading cause of death in infants in the world. The study of CHDs has come a long way since their classification and description. Although transcriptional programmes that are impaired in individuals with CHDs are being identified, the mechanisms of how these deficiencies translate to a structural defect are unknown. In this study, using high-throughput microarray analysis and molecular network analysis, FXN was identified to be the most differentially expressed key gene in CHD. By TargetScan analysis, we predicted FXN was the target gene of miRNA-145 and miRNA-182. Through real-time PCR analysis of clinical samples and experiments in cell lines, we confirmed that miRNA-145 but not miRNA-182 directly binds to the 3′ UTR region of FXN and negatively regulates its expression. We further found that through targeting FXN, miRNA-145 regulates apoptosis and mitochondrial function. In general, our study confirmed the differentially expressed FXN regulates the development of CHD and the differential expression was under the control of miRNA-145. These results might provide new insight into the understanding of the CHD pathogenesis and may facilitate further therapeutic studies.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.